This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Search for Publication

Year(s) from:  to 
Keywords (separated by spaces):

Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video

Zhiwu Huang, Ruiping Wang, Shiguang Shan, Luc Van Gool, Xilin Chen
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
2017, in press


Riemannian manifolds have been widely employed for video representations in visual classification tasks including video-based face recognition. The success mainly derives from learning a discriminant Riemannian metric which encodes the non-linear geometry of the underlying Riemannian manifolds. In this paper, we propose a novel metric learning framework to learn a distance metric across a Euclidean space and a Riemannian manifold to fuse the average appearance and pattern variation of faces within one video. The proposed metric learning framework can handle three typical tasks of video-based face recognition: Video-to-Still, Still-to-Video and Video-to-Video settings. To accomplish this new framework, by exploiting typical Riemannian geometries for kernel embedding, we map the source Euclidean space and Riemannian manifold into a common Euclidean subspace, each through a corresponding high-dimensional Reproducing Kernel Hilbert Space (RKHS). With this mapping, the problem of learning a cross-view metric between the two source heterogeneous spaces can be converted to learning a single-view Euclidean distance metric in the target common Euclidean space. By learning information on heterogeneous data with the shared label, the discriminant metric in the common space improves face recognition from videos. Extensive experiments on four challenging video face databases demonstrate that the proposed framework has a clear advantage over the state-of-the-art methods in the three classical video-based face recognition scenarios.

Download in pdf format
  author = {Zhiwu Huang and Ruiping Wang and Shiguang Shan and Luc Van Gool and Xilin Chen},
  title = {Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video },
  journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
  year = {2017},
  month = {},
  pages = {},
  volume = {},
  number = {},
  keywords = {},
  note = {in press}