Publications

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Search for Publication


Year(s) from:  to 
Author:
Keywords (separated by spaces):

An Implicit Shape Model for Combined Object Categorization and Segmentation

B. Leibe, A. Leonardis, and B. Schiele
Towards Category-Level Object Recognition
J. Ponce, M. Hebert, C. Schmid, A. Zisserman, Ed.
Springer, 2006

Abstract

We present a method for object categorization in real-world scenes. Following a common consensus in the field, we do not assume that a figure-ground segmentation is available prior to recognition. However, in contrast to most standard approaches for object class recognition, our approach automatically segments the object as a result of the categorization. This combination of recognition and segmentation into one process is made possible by our use of an Implicit Shape Model, which integrates both capabilities into a common probabilistic framework. This model can be thought of as a non-parametric approach which can easily handle configurations of large numbers of object parts. In addition to the recognition and segmentation result, it also generates a per-pixel confidence measure specifying the area that supports a hypothesis and how much it can be trusted.We use this confidence to derive a natural extension of the approach to handle multiple objects in a scene and resolve ambiguities between overlapping hypotheses with an MDL-based criterion. In addition, we present an extensive evaluation of our method on a standard dataset for car detection and compare its performance to existing methods from the literature. Our results show that the proposed method outperforms previously published methods while needing one order of magnitude less training examples. Finally, we present results for articulated objects, which show that the proposed method can categorize and segment unfamiliar objects in different articulations and with widely varying texture patterns, even under significant partial occlusion.


Download in pdf format
@InCollection{eth_biwi_00421,
  title = {An Implicit Shape Model for Combined Object Categorization and Segmentation},
  booktitle = {Towards Category-Level Object Recognition},
  pages = {496-510},
  year = {2006},
  publisher = {Springer},
  keywords = {}
}