This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Search for Publication

Year(s) from:  to 
Keywords (separated by spaces):

Visual Interestingness in Image Sequences

Helmut Grabner, Fabian Nater, Michel Druey, Luc Van Gool
ACM International Conference on Multimedia


Interestingness is said to be the power of attracting or holding one's attention (because something is unusual or exciting, etc.). We, as humans, have the great capacity to direct our visual attention and judge the interestingness of a scene. Consider for example the image sequence in the figure on the right. The spider in front of the camera or the snow on the lens are examples of events that deviate from the context since they violate the expectations, and therefore are considered interesting. On the other hand, weather changes or a camera shift, do not raise human attention considerably, even though large regions of the image are influenced. In this work we firstly investigate what humans consider as "interesting" in image sequences. Secondly we propose a computer vision algorithm to automatically spot these interesting events. To this end, we integrate multiple cues inspired by cognitive concepts and discuss why and to what extent the automatic discovery of visual interestingness is possible.

Download in pdf format
  author = {Helmut Grabner and Fabian Nater and Michel Druey and Luc Van Gool},
  title = {Visual Interestingness in Image Sequences},
  booktitle = { ACM International Conference on Multimedia},
  year = {2013},
  keywords = {}