This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Search for Publication

Year(s) from:  to 
Keywords (separated by spaces):

Adaptive confidence regions of motion predictions from population exemplar models

G. Samei, G. Chlebus, G. Székely, C. Tanner
MICCAI Workshop on Abdominal Imaging


Precise radiation therapies require not only accurate prediction of the motion of the structures in the treatment region, but also confidence values of these predictions to enable planning of residual motion and detection of failure predictions. While various motion models have been proposed for the prediction of motion in the abdomen due to free-breathing, none has provided confidence regions. In this study we use the conditional probability density function of statistical liver motion models for predicting confidence regions, propose a method for optimizing the accuracy of the confidence regions and show the adaptability of the confidence regions due to partial observations when using exemplar models. The average accuracy of the confidence regions of single Gaussian (SG) models could be improved to the level of the exemplar models. Exemplar models provided on average better motion predictions (1.14 mm) and slightly smaller 68% confidence regions (1.36 mm) than the SG models (1.21 mm, 1.43 mm resp.). The confidence region size correlated temporally on average weakly (r=0.35) with the errors of the motion prediction for the exemplar models, leading to a higher percentage of treatable locations and lower motion prediction errors per duty cycle than SG models.

Link to publisher's page
  author = {G. Samei and G. Chlebus and G. Székely and C. Tanner},
  title = {Adaptive confidence regions of motion predictions from population exemplar models},
  booktitle = {MICCAI Workshop on Abdominal Imaging},
  year = {2013},
  pages = {231-240},
  keywords = {}