This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Search for Publication

Year(s) from:  to 
Keywords (separated by spaces):

Multi-Activity Tracking in LLE Body Pose Space

Tobias Jaeggli, Esther Koller-Meier, Luc Van Gool
2nd Workshop on HUMAN MOTION Understanding, Modeling, Capture and Animation, ICCV
October 2007


We present a method to simultaneously estimate 3d body pose and action categories from monocular video sequences. Our approach learns a low-dimensional embedding of the pose manifolds using Locally Linear Embedding (LLE), as well as the statistical relationship between body poses and their image appearance. In addition, the dynamics in these pose manifolds are modelled. Sparse kernel regressors capture the nonlinearities of these mappings efficiently. Body poses are inferred by a recursive Bayesian sampling algorithm with an activity-switching mechanism based on learned transfer functions. Using a rough foreground segmentation, we compare Binary PCA and distance transforms to encode the appearance. As a postprocessing step, the globally optimal trajectory through the entire sequence is estimated, yielding a single pose estimate per frame that is consistent throughout the sequence. We evaluate the algorithm on challenging sequences with subjects that are alternating between running and walking movements. Our experiments show how the dynamical model helps to track through poorly segmented low-resolution image sequences where tracking otherwise fails, while at the same time reliably classifying the activity type.

Download in pdf format
  author = {Tobias Jaeggli and Esther Koller-Meier and Luc Van Gool},
  title = {Multi-Activity Tracking in LLE Body Pose Space},
  booktitle = {2nd Workshop on HUMAN MOTION Understanding, Modeling, Capture and Animation, ICCV},
  year = {2007},
  month = {October},
  keywords = {}