This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Search for Publication

Year(s) from:  to 
Keywords (separated by spaces):

We Are Family: Joint Pose Estimation of Multiple Persons

M. Eichner and V. Ferrari
September 2010


We present a novel multi-person pose estimation framework, which extends pictorial structures (PS) to explicitly model interactions between people and to estimate their poses jointly. Interactions are modeled as occlusions between people. First, we propose an occlusion probability predictor, based on the location of persons automatically detected in the image, and incorporate the predictions as occlusion priors into our multi-person PS model. Moreover, our model includes an inter-people exclusion penalty, preventing body parts from different people from occupying the same image region. Thanks to these elements, our model has a global view of the scene, resulting in better pose estimates in group photos, where several persons stand nearby and occlude each other. In a comprehensive evaluation on a new, challenging group photo datasets we demonstrate the benefits of our multi-person model over a state-of-the-art single-person pose estimator which treats each person independently.

Download in pdf format
  author = {M. Eichner and V. Ferrari },
  title = {We Are Family: Joint Pose Estimation of Multiple Persons},
  booktitle = {ECCV},
  year = {2010},
  month = {September},
  keywords = {}