This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Search for Publication

Year(s) from:  to 
Keywords (separated by spaces):

Interactive Object Detection

Angela Yao and Juergen Gall and Christian Leistner and Luc Van Gool


In recent years, the rise of digital image and video data available has led to an increasing demand for image annotation. In this paper, we propose an interactive object annotation method that incrementally trains an object detector while the user provides annotations. In the design of the system, we have focused on minimizing human annotation time rather than pure algorithm learning performance. To this end, we optimize the detector based on a realistic annotation cost model based on a user study. Since our system gives live feedback to the user by detecting objects on the fly and predicts the potential annotation costs of unseen images, data can be efficiently annotated by a single user without excessive waiting time. In contrast to popular tracking-based methods for video annotation, our method is suitable for both still images and video. We have evaluated our interactive annotation approach on three datasets, ranging from surveillance, television, to cell microscopy.

Download in pdf format
  author = {Angela Yao and Juergen Gall and Christian Leistner and Luc Van Gool},
  title = {Interactive Object Detection},
  booktitle = {CVPR},
  year = {2012},
  keywords = {}