Publications

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Search for Publication


Year(s) from:  to 
Author:
Keywords (separated by spaces):

Infinite Kernel Learning

Peter Gehler and Sebastian Nowozin
178, 2008
MPI Technical Report

Abstract

In this paper we consider the problem of automatically learning the kernel from general kernel classes. Specifically we build upon the Multiple Kernel Learning (MKL) framework and in particular on the work of (Argyriou, Hauser, Micchelli, & Pontil, 2006). We will formulate a Semi-Infinite Program (SIP) to solve the problem and devise a new algorithm to solve it (Infinite Kernel Learning, IKL). The IKL algorithm is applicable to both the finite and infinite case and we find it to be faster and more stable than SimpleMKL (Rakotomamonjy, Bach, Canu, & Grandvalet, 2007) for cases of many kernels. In the second part we present the first large scale comparison of SVMs to MKL on a variety of benchmark datasets, also comparing IKL. The results show two things: a) for many datasets there is no benefit in linearly combining kernels with MKL/IKL instead of the SVM classifier, thus the flexibility of using more than one kernel seems to be of no use, b) on some datasets IKL yields impressive increases in accuracy over SVM/MKL due to the possibility of using a largely increased kernel set. In those cases, IKL remains practical, whereas both cross-validation or standard MKL is infeasible.


Download in pdf format
@Techreport{eth_biwi_00656,
  author = {Peter Gehler and Sebastian Nowozin},
  title = {Infinite Kernel Learning},
  year = {2008},
  month = {October},
  number = {178},
  institution = {MPI Technical Report},
  keywords = {}
}