
ACDC: The Adverse Conditions Dataset with Correspondences

for Semantic Driving Scene Understanding

Christos Sakaridis1, Dengxin Dai1,2, and Luc Van Gool1,3
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Abstract

Level 5 autonomy for self-driving cars requires a robust

visual perception system that can parse input images under

any visual condition. However, existing semantic segmenta-

tion datasets are either dominated by images captured un-

der normal conditions or are small in scale. To address this,

we introduce ACDC, the Adverse Conditions Dataset with

Correspondences for training and testing semantic segmen-

tation methods on adverse visual conditions. ACDC con-

sists of a large set of 4006 images which are equally dis-

tributed between four common adverse conditions: fog,

nighttime, rain, and snow. Each adverse-condition image

comes with a high-quality fine pixel-level semantic anno-

tation, a corresponding image of the same scene taken un-

der normal conditions, and a binary mask that distinguishes

between intra-image regions of clear and uncertain seman-

tic content. Thus, ACDC supports both standard semantic

segmentation and the newly introduced uncertainty-aware

semantic segmentation. A detailed empirical study demon-

strates the challenges that the adverse domains of ACDC

pose to state-of-the-art supervised and unsupervised ap-

proaches and indicates the value of our dataset in steering

future progress in the field. Our dataset and benchmark are

publicly available.

1. Introduction

Most of the prominent large-scale image-based datasets

for driving scene understanding, including Cityscapes [8],

Vistas [28] and KITTI [13], are dominated by images cap-

tured under normal visual conditions, i.e., at daytime and in

clear weather. Yet, vision applications such as autonomous

driving impose a strict requirement on perception algo-

rithms to maintain satisfactory performance in adverse do-

mains. Although there are recent efforts to include ad-

verse visual domains in large-scale datasets, such as Oxford

RobotCar [27] and BDD100K [55], these efforts focus ei-

ther on localization/mapping tasks [27,49] or on recognition

tasks which do not involve dense pixel-level outputs, such

as object detection [3, 42, 55]. For instance, while a notable

40% of the object detection set of BDD100K pertains to

nighttime, only 3% of the images in its semantic segmenta-

tion set, namely 345 images, are captured at nighttime [40].

In addition, the pixel-level annotation process for adverse-

condition images is kept identical in [55] to the normal-

condition case, which leads to errors in the ground truth

and renders it unreliable [40]. In contrast, seminal previous

work [8] has underlined the need for specialized techniques

and datasets for pixel-level semantic scene understanding

in adverse visual conditions, due to the inherent aleatory

uncertainty in images captured in such conditions. These

render entire image regions indiscernible even for humans.

ACDC constitutes a response to this need for a large-

scale driving dataset specialized to adverse conditions, in

terms of (i) size, (ii) domain adversity, and (iii) featured

tasks. ACDC includes 4006 images with high-quality pixel-

level semantic annotations, which are distributed equally

among four common adverse conditions in real-world driv-

ing environments, namely fog, nighttime, rain, and snow,

thus featuring a scale of the same order as Cityscapes.

The dataset was deliberately recorded with the respective

adverse conditions clearly present. Thus, a large domain

shift from the normal clear-weather daytime conditions was

achieved. Moreover, for each adverse-condition image, a

corresponding normal-condition image of the same scene

from approximately the same viewpoint is provided, in-

tended for use by weakly supervised methods.

As to the tasks that our dataset supports, apart from stan-

dard semantic segmentation, we add the task of uncertainty-

aware semantic segmentation. For the latter we intro-
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Figure 1. Number of finely annotated pixels per class in ACDC.

duce a specialized annotation protocol and a dedicated per-

formance metric, termed average uncertainty-aware IoU

(AUIoU). The key characteristic of uncertainty-aware se-

mantic segmentation is the principled inclusion of im-

age regions with indiscernible semantic content—invalid

regions—in annotation and evaluation. In particular, the

annotation protocol for our adverse-condition images lever-

ages privileged information in the form of the correspond-

ing normal-condition images and the original adverse-

condition videos, which enables to reliably assign legiti-

mate semantic labels to invalid regions and to include them

in the evaluation both for standard and uncertainty-aware

semantic segmentation. For the latter task, the separation of

labeled pixels into invalid and valid is encoded in a binary

mask. While both tasks require a hard semantic prediction,

the uncertainty-aware task additionally expects a confidence

map prediction. AUIoU is designed to take into account

both the semantic and the confidence prediction and to re-

ward predictions with low confidence on invalid pixels and

high confidence on valid pixels. The requirement for an ad-

ditional confidence prediction is relevant for safety-oriented

applications, as it can help the downstream decision-making

system avoid the fatal consequences of a low-confidence

prediction being false, e.g. when a pedestrian is missed.

Apart from being a challenging benchmark for super-

vised semantic segmentation approaches, ACDC is a well-

suited test bed for domain adaptation. A multitude of

recent works [7, 15, 22, 23, 26, 41, 43, 44, 46, 48, 51, 53,

59, 60, 62, 65, 66] have focused on unsupervised domain

adaptation (UDA) for semantic segmentation, but most of

them are validated only on an artificial synthetic-to-real

setting, using GTA5 [34] and SYNTHIA [36] as source

datasets and Cityscapes [8] as the target dataset. The

normal-to-adverse domain adaptation scenario for seman-

tic segmentation, which is much more relevant for real-

world deployment of autonomous cars due to the difficulty

of both acquiring and annotating adverse-condition data,

has largely been overlooked. In particular, much fewer

works consider normal-to-adverse adaptation in their exper-

iments [10,11,32,37,38,39,40] and whenever they do, they

either restrict the target adverse domain to a single condi-

tion, e.g. nighttime [10, 39, 40], fog [37, 38], or rain [11],

or do not include a quantitative evaluation on the real tar-

get domain altogether [32]. We attribute this fragmentation

of normal-to-adverse adaptation works to the absence of a

general large-scale dataset for semantic segmentation that

evenly covers the majority of common adverse conditions

and provides reliable ground truth for a sound evaluation in

such challenging domains. ACDC answers exactly the need

for such a dataset and will serve as a test bed for unsuper-

vised and weakly supervised domain adaptation. Experi-

ments such as Cityscapes→ACDC adaptation are straight-

forward thanks to the identical label sets of the two datasets,

which facilitates validation of new domain adaptation ap-

proaches in the normal-to-adverse setting.

We experiment with ACDC in four main directions:

evaluation of models pre-trained on normal conditions, su-

pervised learning in adverse conditions, unsupervised and

weakly supervised normal-to-adverse domain adaptation,

and evaluation of uncertainty-aware semantic segmentation

baselines and oracles. Results show that access to ground-

truth annotations under adverse conditions is indispens-

able for achieving high performance, as pre-trained mod-

els severely deteriorate under adverse conditions. More-

over, the real-world Cityscapes→ACDC adaptation sce-

nario poses significant challenges to all state-of-the-art

UDA methods, which recover at best only a small por-

tion of the performance gain over the source-domain model

compared to using full supervision. This underlines the

need for UDA methods that perform better when handling

adverse target domains and highlights the importance of

ACDC in steering future work in this direction. Finally, the

uncertainty-aware annotations of ACDC create significant

room for improvement over simple confidence prediction

baselines and help promote future work on semantic seg-

mentation methods that simultaneously models uncertainty.

2. Related Work

Datasets for driving scene understanding include real-

world and synthetic sets that support geometric and recog-

nition tasks. KITTI [13] and Cityscapes [8] pioneered

this area with LiDAR and semantic image annotations, re-

spectively. Subsequent datasets mostly aimed at increas-

ing the scale [17], diversity [28] and number of tasks [55].

As high-quality pixel-level annotations proved hard to ac-



quire [8, 28], another line of work focused on creating syn-

thetic sets at an even larger scale [19, 33, 34, 36] and in

which ground truth is automatically generated, as well as

translating real datasets to adverse conditions such as fog

or rain [14, 37, 38]. Oxford Robotcar [27] was the first

real-world large-scale dataset in which adverse visual con-

ditions such as nighttime, rain and snow were significantly

represented, but it did not feature semantic annotations.

While more recent large-scale sets [2,30] that cover adverse

conditions, such as Waymo Open [42] and nuScenes [3],

include bounding boxes, they still lack dense pixel-level

semantic annotations, which are vital for real-world au-

tonomous agents [63]. BDD100K [55] is the only excep-

tion to this rule, with ca. 13% of its 10000 pixel-level anno-

tations pertaining to adverse conditions but containing se-

vere errors [40], while only a small portion of each of the

1881 adverse-condition images in ADUULM [29] is anno-

tated. On the other hand, several sets with small-scale pixel-

level annotations covering adverse conditions [58] were re-

cently presented, focusing on fog [9,38], nighttime [10,40],

and rain [45]. A notable case is Dark Zurich [40], with

201 fine pixel-level nighttime annotations and a dedicated

annotation protocol and evaluation metric that handles re-

gions with ambiguous content. ACDC improves both upon

BDD100K, in terms of ground truth quality, and Dark

Zurich, in terms of scale and condition diversity, featuring

4006 high-quality fine pixel-level annotations in which fog,

night, rain and snow are equally represented.

Semantic segmentation has progressed rapidly over the

last years, primarily through the design of convolutional

neural networks. Based on fully convolutional architec-

tures [25], seminal works introduced atrous convolution [4,

5, 56] and encoder-decoder structures with skip connec-

tions [35] to exploit context and improve localization, re-

spectively. Balancing between global and local information

was further addressed by parallel branches of different res-

olutions [24, 31] and global pooling [61]. Other works fo-

cused on real-time performance [54], leveraging different

modalities such as depth [52], and defining neighborhood-

based supervision [20] for segmentation. The current state

of the art includes i.a. DeepLabv3+ [6] and ANN [64] with

pyramid pooling modules, DANet [12] and CCNet [18]

with attention mechanisms, and HRNet [47] and OCR [57]

with high-resolution representations. While performance

on the popular Cityscapes benchmark is increasingly satu-

rating, we demonstrate that state-of-the-art methods achieve

much lower performance on ACDC (see Sec. 4). Thus,

ACDC provides a more challenging benchmark for seman-

tic segmentation thanks to the adversity of its domains and

is therefore able to foster further progress in the field.

Adaptation of semantic segmentation networks to do-

mains where full supervision is not available was launched

shortly after the introduction of supervised approaches [16].

A major class of UDA works employs adversarial domain

adaptation to implicitly align the source and target domains

at the level of pixels and/or features [7, 15, 26, 41, 43, 44,

46, 48, 60]. Other approaches to UDA rely on self-training

with pseudo-labels in the target domain [65,66] or combine

self-training with adversarial adaptation [23] or with pixel-

level adaptation via explicit transforms from source to tar-

get [22, 53]. However, all aforementioned approaches have

been evaluated only on the artificial scenario of synthetic-

to-real adaptation and overlook normal-to-adverse adap-

tation, which is of higher practical importance for au-

tonomous cars. ACDC constitutes the large-scale target-

domain dataset which has been missing so far for such a

normal-to-adverse experiment and aims to steer the devel-

opment of unsupervised and weakly supervised adaptation

approaches that can cope with adverse target domains.

3. ACDC Dataset

We base the design of ACDC on the same general princi-

ples as seminal normal-condition datasets [8] and adapt the

collection and annotation process to fit better the adverse

condition setting at hand.

3.1. Collection

Our data collection is guided by the decision to record

the same set of scenes both under adverse and normal con-

ditions. We define the domain of normal conditions as the

combination of daytime and clear weather, i.e. good visibil-

ity and no precipitation or snow cover on the ground. While

the focus of ACDC is on adverse conditions, the acquisition

of the corresponding normal-condition images is vital both

for the subsequent annotation step and to support weakly su-

pervised methods, as the same scene can be much easier to

parse in normal conditions, both for humans and machines.

Thus, we recorded several days of video in Switzerland

by driving around in a car, primarily in urban areas but also

on highways and in rural regions. In order to have a clear

domain separation between different adverse conditions, we

use the following criterion for the adverse-condition record-

ings: each recording takes place under only one type of ad-

versity from a set of four items, i.e., fog, nighttime, rain, and

snow. For example, our foggy recordings are performed at

daytime and without rain or snow. For snow, both snowfall

and snow cover on the ground are admissible. Moreover,

we keep for further processing only the parts of the adverse-

condition recordings that correspond to an intense presence

of the respective condition, so as to maximize the domain

shift from normal conditions as well as domain adversity.

We record with a 1080p GoPro Hero 5 camera, mounted

in front of the windshield at nighttime and in normal condi-

tions and behind the windshield in fog, rain, and snow. The

camera records 8-bit RGB frames at a rate of 30 Hz.



(a) Input image I (b) Stage 1 annotation (draft) (c) Corresponding image I
′ (d) Stage 2 annotation (GT) (e) Invalid mask J

Figure 2. Illustration of annotation protocol for ACDC. The color coding of the semantic classes matches Fig. 1. All annotations in (b),

(d) and (e) pertain to the input image I in (a). A white color in (b) and (d) denotes unlabeled pixels.

3.2. Correspondence Establishment

Our camera also provides GPS readings, which allow us

to establish image-level correspondences between adverse-

condition and normal-condition recordings. In particu-

lar, for each adverse-condition recording, we perform a

normal-condition recording along exactly the same route.

We then use the sequences of GPS measurements of the

two recordings to perform a global dynamic-programming-

based matching of the adverse GPS sequence to the normal

one, where the objective is defined by the Euclidean dis-

tances of matched pairs of GPS samples. Our global match-

ing handles routes with loops better than simple nearest

neighbors. Each adverse-condition frame is then matched

to a normal-condition frame based on the corresponding

matched samples of the GPS sequences.

3.3. Dataset Splits

ACDC is split into four sets corresponding to the exam-

ined conditions. We manually selected 1000 foggy, 1006

nighttime, 1000 rainy and 1000 snowy images from the

recordings for dense pixel-level semantic annotation, for a

total of 4006 adverse-condition images. The selection pro-

cess aimed at maximizing the complexity and diversity of

captured scenes. Within each recording, any pair of selected

images is at least 20 s or 50 m apart (whatever comes first).

The dataset is also split into training, validation, and test

sets. We apply a global geographical split across all con-

ditions, so that there is zero overlap between the three sets,

even for different conditions. Given the abundance of train-

ing data from normal-condition datasets [8, 28, 55] that al-

low to pre-train semantic segmentation models, we opt for

a split with a greater test set size than usual. This aims

at providing a highly challenging benchmark for semantic

segmentation, both in terms of scale and domain adversity.

In particular, we split the set of each adverse condition into

400 training, 100 validation and 500 test images, except the

nighttime set with 106 validation images. This results in a

total of 1600 training and 406 validation images with public

annotations and 2000 test images with annotations withheld

for benchmarking purposes, as per standard practice [8].

3.4. Annotation

Images captured under adverse conditions contain in-

valid regions, i.e. regions with indiscernible semantic con-

tent, which generally co-exist with valid regions in the same

image. We take this into account for creating annotations of

ACDC and design a specialized annotation protocol, which

leverages privileged information from the corresponding

normal-condition images and the original adverse-condition

videos and allows (i) the reliable assignment of semantic la-

bels to invalid regions and (ii) the creation of a binary mask

that distinguishes valid from invalid regions.

Our annotation protocol consists of two cascaded anno-

tation stages. At stage 1, a semantic labeling draft is manu-

ally produced from the adverse-condition image I , in which

pixels that cannot be unquestionably assigned to a single se-

mantic class are left unlabeled. At stage 2, the correspond-

ing normal-condition image I ′ and the adverse-condition

video from which I was extracted are used to augment and

finalize the annotation. In particular, the annotator can as-

sign a legitimate label to pixels that were left unlabeled in

stage 1 and correct pixels that were incorrectly labeled in

stage 1. Pixels that remain unclear in stage 2 are left unla-

beled and are not used for training or evaluation.

The final annotation outputs are twofold: (i) the final se-

mantic annotation H after stage 2, and (ii) a binary invalid

mask J , where pixels whose label changed from stage 1 to

stage 2 are set to 1 (invalid) and pixels with the same seman-

tic label for both stages are set to 0 (valid). J enables the

introduction of the new task of uncertainty-aware semantic

segmentation, which we detail in Sec. 5.

The 4006 fine-pixel annotations of ACDC were created

by a professional team of annotators to ensure high-quality

ground truth. Annotators were asked to be conservative in

labeling pixels in both stages, so as to minimize errors. Both

the initial draft from stage 1 and the final annotation from

stage 2 passed through quality control. The total time re-

quired for annotating a single image was 3.3 h on average.

The class specifications of ACDC are directly inherited

from Cityscapes. In particular, we annotate the 19 evalua-

tion classes of Cityscapes, which include the most common

and traffic-related objects in driving scenes. Objects that

belong to classes outside this set receive a fall-back label

and are not used for training or evaluation. This choice of

classes provides full compatibility of ACDC to Cityscapes

and other normal-condition datasets for semantic segmenta-

tion [28, 55]. Detailed annotation statistics are presented in

Fig. 1. An example of our two-stage annotation protocol is

shown in Fig. 2 for a snowy image. Note the assignment of a

region in the lower right part of the image that is unlabeled



Table 1. Comparison of ACDC against adverse-condition semantic segmentation datasets. “Adverse annot.”: total annotated adverse-

condition images, “Fog”/“Night”/“Rain”/“Snow”: annotated foggy/nighttime/rainy/snowy images, “Inv. regions”: can invalid regions get

legitimate labels?, “Corr. normal”: are corresponding normal-condition images available?, “Inv. masks”: are invalid masks available?

Dataset Adverse annot. Fog Night Rain Snow Classes Reliable GT Fine GT Inv. regions Corr. normal Inv. masks

Foggy Driving [38] 101 101 0 0 0 19 X X × × ×

Foggy Zurich [9] 40 40 0 0 0 19 X X × × ×

Nighttime Driving [10] 50 0 50 0 0 19 X × × × ×

Dark Zurich [40] 201 0 201 0 0 19 X X X X X

Raincouver [45] 326 0 95 326 0 3 X × × × ×

WildDash [58] 226 10 13 13 26 19 X X × × ×

BDD100K [55] 1346 23 345 213 765 19 × X × × ×

ACDC 4006 1000 1006 1000 1000 19 X X X X X

Table 2. Comparison of state-of-the-art domain adaptation methods on Cityscapes→ACDC adaptation. Cityscapes serves as the

source domain and the entire ACDC including all four conditions serves as the target domain. The first and second groups of rows

present unsupervised and weakly supervised methods, respectively. All unsupervised methods share the same network architecture. The

performance of the respective models trained on Cityscapes (Source model) and of the oracle models trained on ACDC with 100 labels

(Oracle-100), 200 labels (Oracle-200), and all 1600 labels (Oracle) are also reported.
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Source model [5] 71.9 26.2 51.1 18.8 22.5 19.7 33.0 27.7 67.9 28.6 44.2 43.1 22.1 71.2 29.8 33.3 48.4 26.2 35.8 38.0

AdaptSegNet [43] 69.4 34.0 52.8 13.5 18.0 4.3 14.9 9.7 64.0 23.1 38.2 38.6 20.1 59.3 35.6 30.6 53.9 19.8 33.9 33.4

ADVENT [46] 72.9 14.3 40.5 16.6 21.2 9.3 17.4 21.2 63.8 23.8 18.3 32.6 19.5 69.5 36.2 34.5 46.2 26.9 36.1 32.7

BDL [23] 56.0 32.5 68.1 20.1 17.4 15.8 30.2 28.7 59.9 25.3 37.7 28.7 25.5 70.2 39.6 40.5 52.7 29.2 38.4 37.7

CLAN [26] 79.1 29.5 45.9 18.1 21.3 22.1 35.3 40.7 67.4 29.4 32.8 42.7 18.5 73.6 42.0 31.6 55.7 25.4 30.7 39.0

CRST [65] 51.7 24.4 67.8 13.3 9.7 30.2 38.2 34.1 58.0 25.2 76.8 39.9 17.1 65.4 3.7 6.6 39.6 11.8 8.6 32.8

FDA [53] 73.2 34.7 59.0 24.8 29.5 28.6 43.3 44.9 70.1 28.2 54.7 47.0 28.5 74.6 44.8 52.3 63.3 28.3 39.5 45.7

SIM [48] 53.8 6.8 75.5 11.6 22.3 11.7 23.4 25.7 66.1 8.3 80.6 41.8 24.8 49.7 38.6 21.0 41.8 25.1 29.6 34.6

MRNet [62] 72.2 8.2 36.4 13.7 18.5 20.4 38.7 45.4 70.2 35.7 5.0 47.8 19.1 73.6 42.1 36.0 47.4 17.7 37.4 36.1

Oracle-100 84.4 54.8 76.4 19.3 28.9 29.5 36.5 42.6 74.2 40.3 87.7 42.5 16.5 74.9 36.5 28.6 55.9 27.3 38.6 47.1

Oracle-200 86.2 55.0 77.9 21.7 30.9 30.0 37.6 42.5 76.8 45.8 90.2 45.4 19.1 75.8 38.5 38.0 64.2 21.6 39.5 49.3

Oracle 88.0 62.3 80.8 37.0 35.1 33.9 49.8 49.5 80.1 50.7 92.5 51.1 26.5 79.9 49.0 41.1 72.2 26.5 44.2 55.3

Source model [24] 66.3 28.9 67.6 19.2 25.9 36.7 50.0 47.5 69.4 28.8 83.0 42.1 17.7 72.6 30.9 31.6 48.9 26.1 36.7 43.7

MGCDA [40] 73.4 28.7 69.9 19.3 26.3 36.8 53.0 53.3 75.4 32.0 84.6 51.0 26.1 77.6 43.2 45.9 53.9 32.7 41.5 48.7

Oracle 92.5 71.2 86.2 39.0 44.0 53.2 68.8 66.0 85.1 59.3 94.9 65.2 38.5 85.8 53.8 59.7 76.2 47.5 54.5 65.3

at stage 1 (Fig. 2b) to the road label at stage 2 (Fig. 2d),

thanks to the clear view from the normal-condition image.

3.5. Comparison to Related Datasets

To the best of our knowledge, ACDC constitutes the

largest adverse-condition semantic segmentation dataset to

date. In Table 1, we compare ACDC to existing datasets

that also address semantic segmentation under adverse con-

ditions. Most of these datasets focus on a single condition

and are of small scale. WildDash covers a wider variety of

adverse conditions but also has a small scale. BDD100K

includes 10000 images with semantic segmentation anno-

tations. We inspected these images manually to identify

those that pertain to fog, night, rain, and snow. We found

that only 1346/10000 images pertain to any of these four

conditions. By contrast, ACDC is fully composed of these

four common adverse conditions. Notably, it contains one

order of magnitude more annotated images than any other

competing dataset for each of fog, night and rain. At the

same time, our specialized annotation protocol using corre-

sponding normal-condition images ensures reliable annota-

tions even for invalid regions, making ACDC a high-quality

dataset for training and evaluation for adverse conditions.

4. Semantic Segmentation

The first task ACDC supports is standard semantic seg-

mentation. All results in Sec. 4 are reported for the test

set of ACDC using the IoU metric. We experiment for

our dataset with domain adaptation methods, externally pre-

trained models and supervised approaches.

4.1. NormaltoAdverse Adaptation

We present a new benchmark for UDA of semantic seg-

mentation: Cityscapes→ACDC. We select eight represen-

tative state-of-the-art UDA methods, train them with their

default configurations for adaptation from Cityscapes to the

entire ACDC and present the results in Table 2. All eight

methods share the same DeepLabv2-based architecture [5].

Whereas these methods have achieved significant perfor-

mance gains in the popular synthetic-to-real adaptation set-



Table 3. Comparison of state-of-the-art unsupervised domain

adaptation methods on Cityscapes→ACDC adaptation for in-

dividual conditions. We train a separate model on each condition-

specific subset of ACDC and evaluate each model on the condition

it has been trained for. Performance of the model trained only on

the source domain (Source model) and of oracles with access to the

target domain labels for each condition (Oracle) is also reported.

Method Fog Night Rain Snow

Source model 33.5 30.1 44.5 40.2

AdaptSegNet [43] 31.8 29.7 49.0 35.3

ADVENT [46] 32.9 31.7 44.3 32.1

BDL [23] 37.7 33.8 49.7 36.4

CLAN [26] 39.0 31.6 44.0 37.7

FDA [53] 39.5 37.1 53.3 46.9

SIM [48] 36.6 28.0 44.5 33.3

MRNet [62] 38.8 27.9 45.4 38.7

Oracle 52.2 45.4 57.6 56.8

ting, we observe that most of them do not improve upon

the source-domain baseline in our normal-to-adverse set-

ting. The best-performing UDA method is FDA, which is

based on a pixel-level adaptation strategy with an explicit

Fourier prior. Even FDA is outperformed by the model that

is supervised with only 100 target-domain labels, indicating

that there is a lot of room for improvement for UDA meth-

ods on this new challenging normal-to-adverse benchmark.

The image-level correspondences of ACDC between ad-

verse and normal conditions act as weak supervision. We

experiment with MGCDA, a weakly supervised method that

exploits such correspondences. MGCDA outperforms FDA

but is still inferior to its fully supervised counterpart.

In addition, we train state-of-the-art UDA methods to

adapt from Cityscapes to individual conditions of ACDC in

Table 3. The increased uniformity of the target domains in

this setting results in larger performance gains overall com-

pared to Table 2. However, night and snow prove particu-

larly challenging for most methods and only FDA brings a

performance gain on snow.

4.2. Evaluation of Pretrained Models on ACDC

In Table 4, we use ACDC to evaluate semantic seg-

mentation models which have been pre-trained on external

datasets. For models pre-trained on Cityscapes, the perfor-

mance drop is larger on the nighttime set, implying that the

domain shift from the normal-condition domain is larger for

this set. Methods that specialize on fog or nighttime gener-

ally perform better on that condition compared to models

pre-trained on Cityscapes. Moreover, most of these special-

ized methods also improve the performance on conditions

other than the one encountered at training time.

4.3. Supervised Learning on Adverse Conditions

We use ACDC to train four state-of-the-art supervised

semantic segmentation methods and report their perfor-

Table 4. Comparison of externally pre-trained models on

ACDC for individual conditions and jointly for all condi-

tions. The three groups of rows present models pre-trained

on normal, foggy, and nighttime conditions respectively. CS:

Cityscapes [8], FC: Foggy Cityscapes [38], FC-DBF: Foggy

Cityscapes-DBF [37], FZ: Foggy Zurich [37], ND: Nighttime

Driving [10], DZ: Dark Zurich [40].

Method Trained on Fog Night Rain Snow All

RefineNet [24] CS 46.4 29.0 52.6 43.3 43.7

DeepLabv2 [5] CS 33.5 30.1 44.5 40.2 38.0

DeepLabv3+ [6] CS 45.7 25.0 50.0 42.0 41.6

DANet [12] CS 34.7 19.1 41.5 33.3 33.1

HRNet [47] CS 38.4 20.6 44.8 35.1 35.3

SFSU [38] FC 45.6 29.5 51.6 41.4 42.9

CMAda [37] FC-DBF+FZ 51.2 32.0 53.4 47.6 47.1

DMAda [10] ND 50.7 32.7 54.9 48.9 47.9

GCMA [39] CS+DZ 52.4 42.9 58.0 53.8 53.4

MGCDA [40] CS+DZ 45.9 40.8 54.2 50.5 48.9

DANNet [50] CS+DZ – 47.6 – – –

mance in Table 5. Qualitative results are shown in Fig. 3 for

two supervised methods and one UDA method. We draw

the following conclusions: (1) full supervision in adverse

conditions is more valuable than designing a better architec-

ture trained solely on normal conditions, as even an earlier

method [5] performs better with full supervision than the

top-performing externally pre-trained model (cf. Table 4).

(2) ACDC is a challenging benchmark for supervised meth-

ods due to its hard visual domains; even the very recent

HRNet scores only 75.0% mIoU on the test set, which is

5.4% lower than its respective performance of 80.4% on

Cityscapes [47]. (3) The rankings of the supervised and

the pre-trained models do not correlate well, as can be seen

from the results in Tables 5 and 4.

The last point suggests that state-of-the-art networks

such as HRNet have enough capacity to overfit to datasets

such as Cityscapes, which would explain the low per-

formance of the Cityscapes pre-trained HRNet model on

ACDC. We test this hypothesis by training HRNet jointly

on Cityscapes and ACDC; our expectation is that the jointly

trained model will at least match the performance of the

individually trained models on each dataset. This is con-

firmed, as the jointly trained model gets 81.2% mIoU on

Cityscapes and 74.8% on ACDC, beating and being on a par

with the respective individually trained models. Thus, even

if ACDC is not of very large scale, it helps to efficiently reg-

ularize segmentation models for normal conditions as well.

Table 6 compares models trained on a single adverse

condition, termed condition experts, against models trained

on the entire training set, termed uber models. Each condi-

tion expert is evaluated on the condition it has been trained

on. The uber models generally beat the respective condi-

tion experts across different conditions and segmentation

networks. This hints that the capacity of these networks



Table 5. Comparison of state-of-the-art supervised semantic segmentation methods on ACDC. Training and evaluation are performed

using the complete training and test sets, respectively.
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RefineNet [24] 92.5 71.2 86.2 39.0 44.0 53.2 68.8 66.0 85.1 59.3 94.9 65.2 38.5 85.8 53.8 59.7 76.2 47.5 54.5 65.3

DeepLabv2 [5] 88.0 62.3 80.8 37.0 35.1 33.9 49.8 49.5 80.1 50.7 92.5 51.1 26.5 79.9 49.0 41.1 72.2 26.5 44.2 55.3

DeepLabv3+ [6] 93.4 74.8 89.2 53.0 49.0 58.7 71.1 67.4 87.8 62.7 95.9 69.7 36.0 88.1 67.7 71.8 85.1 48.0 59.8 70.0

HRNet [47] 95.3 79.9 90.7 53.7 57.4 65.9 78.4 75.9 88.8 68.6 96.1 75.5 54.0 91.2 68.2 76.2 85.4 58.4 65.1 75.0

Figure 3. Qualitative results of selected semantic segmentation methods on ACDC. From left to right: image, ground-truth annotation,

FDA [53], DeepLabv3+ [6], and HRNet [47]. The color coding of the semantic classes matches Fig. 1.

Table 6. Comparison of condition experts vs. uber models

on the different conditions of ACDC. The first group of rows

presents condition-specific expert models trained on a single con-

dition, while the second group presents uber models trained on all

conditions. Note that the performance on all conditions is not an

average of the respective performances on individual conditions.

Method Fog Night Rain Snow All

RefineNet [24] 63.6 52.2 66.4 62.5 62.8

DeepLabv2 [5] 52.2 45.4 57.6 56.8 54.9

DeepLabv3+ [6] 68.7 59.2 73.5 70.5 69.6

HRNet [47] 70.8 63.2 72.7 70.2 70.9

RefineNet [24] 65.7 55.5 68.7 65.9 65.3

DeepLabv2 [5] 54.5 45.3 59.3 57.1 55.3

DeepLabv3+ [6] 69.1 60.9 74.1 69.6 70.0

HRNet [47] 74.7 65.3 77.7 76.3 75.0

is large enough to discover discriminative representations

for all conditions simultaneously. We also evaluate ensem-

bles of condition experts against uber models on the com-

plete test set (“All”), where the ensemble uses the expert

corresponding to the condition of the input image for pre-

diction. Again, the uber models outperform the ensembles

of experts for all examined methods. Moreover, all methods

perform worst at nighttime, indicating that the nighttime set

of ACDC represents a harder domain than the other sets.

We focus on the widely used DeepLabv3+ network [6]

for a detailed study of class-level performance across dif-

ferent conditions and compare the performance of the four

condition experts in Table 7. We make the following obser-

vations: (1) the lowest performance for road and sidewalk

occurs in snow, which can be attributed to confusion be-

tween the two classes due to similar appearance in the pres-

ence of snow cover. (2) Classes that usually appear dark

or are not well-lit at nighttime, e.g., building, vegetation,

traffic sign, and sky, are harder to segment at nighttime. (3)

Performance on classes with instances of small size, such as

person, rider, and bicycle, is lowest on fog, probably due to

the combined effect of contrast reduction and low resolution

for instances of these classes that are far from the camera.

We also evaluate in Table 8 the four DeepLabv3+ condi-

tion experts on conditions that are not encountered at train-

ing. Excluding nighttime, the results are close to symmetric

with respect to training versus evaluation condition; e.g.,

training on fog and testing on snow results in a similar per-

formance to training on snow and testing on fog. In contrast,

performance of the night expert on other conditions is much

higher than performance of other experts at night, implying

that representations learned from the nighttime domain can

generalize better to the other conditions than vice versa.

5. Uncertainty-Aware Semantic Segmentation

Existing works that model uncertainty in semantic seg-

mentation [1, 21] are evaluated only with IoU, which

does not assess the predicted confidence. In contrast, for

uncertainty-aware semantic segmentation, algorithms are

required to output both a hard semantic prediction Ĥ and

a confidence map C with values in the range [0, 1]. The av-

erage UIoU (AUIoU) metric is computed by thresholding C

at multiple thresholds across the range [0, 1], calculating the

UIoU [40] for each threshold and averaging the results. A

pixel p with confidence value below the examined threshold

is treated as invalid and contributes positively if J(p) = 1



Table 7. Comparison of class-level performance of DeepLabv3+ condition experts on the various conditions of ACDC. A different

model is trained on each individual condition and then evaluated on this condition.
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Fog 93.8 77.4 88.8 51.0 43.3 54.2 68.2 71.7 87.7 74.6 98.2 53.5 32.1 83.8 69.3 84.4 85.3 47.2 40.1 68.7

Night 94.7 75.9 85.0 48.4 38.6 52.2 55.8 54.4 76.1 30.3 84.2 67.4 41.1 85.0 8.3 62.3 80.6 35.6 49.8 59.2

Rain 92.8 77.4 93.9 67.3 58.1 64.1 74.4 75.9 94.2 50.8 98.6 70.8 33.4 90.4 67.7 79.2 86.8 54.6 66.1 73.5

Snow 91.9 70.9 90.1 48.9 52.0 62.2 79.2 74.5 92.0 47.0 97.6 78.2 35.9 90.4 61.7 64.3 89.2 43.9 69.4 70.5

Table 8. Cross-evaluation of DeepLabv3+ condition experts on

the various conditions of ACDC. Each model is trained on an

individual condition and evaluated on each condition separately.

Performance of the Cityscapes pre-trained model is also reported.

Train/Eval Fog Night Rain Snow

Normal 45.7 25.0 50.0 42.0

Fog 68.7 40.7 63.5 59.1

Night 58.5 59.2 55.6 49.6

Rain 65.2 46.0 73.5 63.5

Snow 59.2 38.0 69.3 70.5

Table 9. Uncertainty-aware semantic segmentation baseline re-

sults using AUIoU. Supervised methods for standard semantic

segmentation are trained and evaluated either separately on each

condition or jointly on all conditions for semantic label predic-

tion. Confidence prediction baselines: globally constant and equal

to 100% (Constant 100%), max-softmax network outputs (Max-

Softmax), ground-truth invalid masks (GT).

Method Confidence Fog Night Rain Snow All

RefineNet [24] Constant 100% 63.6 52.2 66.4 62.5 65.3

RefineNet [24] Max-Softmax 60.6 51.4 62.5 59.9 62.5

RefineNet [24] GT 67.9 61.1 67.9 64.0 68.8

DeepLabv2 [5] Constant 100% 52.2 45.4 57.6 56.8 55.3

DeepLabv2 [5] Max-Softmax 51.9 45.9 56.0 56.8 54.7

DeepLabv2 [5] GT 56.7 54.7 59.1 58.4 58.9

DeepLabv3+ [6] Constant 100% 68.7 59.2 73.5 70.5 70.0

DeepLabv3+ [6] Max-Softmax 66.4 59.1 70.6 67.9 67.8

DeepLabv3+ [6] GT 73.1 67.1 75.0 72.0 73.3

(true invalid) and negatively if J(p) = 0 (false invalid).

5.1. Baselines and Oracles

We present the results of straightforward baselines for

uncertainty-aware segmentation that are based on methods

for standard semantic segmentation in Table 9. We first

evaluate three state-of-the-art methods using confidence

maps that are constant and equal to 1, i.e., not modeling

confidence. In this case, AUIoU reduces to IoU. Any sen-

sible method that models confidence should improve upon

this baseline. Using the max-softmax scores output by these

methods as confidence maps generally yields inferior re-

sults to globally constant confidence, as softmax is not a

good proxy for confidence. An upper bound for the per-

formance of the examined methods is obtained by using

a confidence oracle. More specifically, we use the binary

complement of the ground-truth invalid mask J as the con-

fidence prediction. This raises AUIoU performance signif-

icantly across all conditions compared to the globally con-

stant confidence baseline. The performance gap between

the oracle and the baseline is largest for night, indicating

that explicitly modeling uncertainty has the potential to im-

prove performance especially in the nighttime domain.

We have also trained [1] on ACDC, using the GT invalid

masks for training its outlier detection part. The learned

confidence by [1] leads to lower test set AUIoU (52.0%)

than constant confidence (53.0%), indicating that a better

modeling of uncertainty is needed in future approaches.

6. Conclusion and Outlook

In this paper, we have presented ACDC, a large-scale

dataset and benchmark suite for semantic driving scene un-

derstanding in adverse conditions. Our dataset covers ad-

verse visual domains that are common in driving scenarios

and features high-quality pixel-level annotations which also

include visually degraded image regions. Our annotations

support both the standard and the new uncertainty-aware se-

mantic segmentation task.

We have evaluated several state-of-the-art approaches on

our benchmark, both in the supervised and the unsuper-

vised setting. The conclusions from this evaluation show

the importance of ACDC in steering future progress in the

field: (i) ACDC provides a challenging target domain for

unsupervised domain adaptation approaches in the normal-

to-adverse adaptation setting, as most state-of-the-art ap-

proaches yield at best marginal performance gains, (ii)

ACDC is a hard benchmark for supervised semantic seg-

mentation methods, as the best baseline obtains an IoU of

only 75.0%, whereas the same baseline scores 80.4% on

Cityscapes, (iii) ACDC can be used jointly with existing

normal-condition datasets for training in order to regular-

ize models better and improve their performance both under

normal and adverse conditions.
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