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A. Training Details
We provide the detailed training configurations for the

various methods for semantic segmentation that have been
used in Sec. 4 of the paper and for the method in [1]
for uncertainty-aware semantic segmentation that has been
used in Sec. 5 of the paper.

A.1. Normal-to-Adverse Adaptation

For the comparison in Table 2, we use as source-
domain model the DeepLabv2 [5] model that is used as
the Cityscapes oracle in AdaptSegNet [43], with a perfor-
mance of 65.1% mIoU on the Cityscapes validation set. For
all eight unsupervised domain adaptation (UDA) methods
that are compared, we use their default training configura-
tions, including the learning rate schedule and the weights
of the various losses. The number of training iterations run
for each method as well as the number of self-supervised
learning rounds that are used by some of the methods are
reported in Table 10. For FDA, SIM and MRNet, we run a
first training round without self-training followed by a sec-
ond training round with self-training, as per default imple-
mentation of these methods. For FDA, we train three sep-
arate models in each training round, one for each different
value of the β parameter from the set {0.01, 0.05 0.09}, and
use the average prediction of the three models at test time.
In all cases, we use the model weights corresponding to the
final training iteration for testing.

The same source-domain model is also used for the ex-
periment on adaptation to individual conditions presented
in Table 3. Again, we use the default training configura-
tions for all examined methods and across all four condi-
tions. The number of training iterations run for each method
to adapt to each condition as well as the number of self-
supervised learning rounds that are used by some of the
methods are reported in Table 11. For MRNet and fog,
the self-supervised training round includes 35k iterations
instead of 40k. In addition, for MRNet and rain, the first

Table 10. Training details for UDA methods in
Cityscapes→ACDC adaptation. “SSL rounds”: number
of training rounds that include supervision from pseudo-labels;
if not relevant for a method, – is reported. “Training iterations”:
number of SGD iterations for each training round (number of
epochs for each training round is alternatively reported).

Method SSL rounds Training iterations

AdaptSegNet – 95k
ADVENT – 80k
BDL 0 80k
CLAN – 90k
CRST 3 2 epochs
FDA 1 80k
SIM 1 80k
MRNet 1 50k

Table 11. Training details for UDA methods in
Cityscapes→ACDC adaptation for individual conditions.
“SSL rounds”: number of training rounds that include supervision
from pseudo-labels; if not relevant for a method, – is reported.
“Training iterations”: number of SGD iterations for each training
round.

Method SSL rounds Training iterations

AdaptSegNet – 40k
ADVENT – 40k
BDL 0 40k
CLAN – 40k
FDA 1 40k
SIM 1 40k
MRNet 1 40k

training round without self-supervised training includes 25k
iterations instead of 40k.

A.2. Supervised Learning on Adverse Conditions

For training the four semantic segmentation methods that
are compared in Tables 5 and 6, we have generally used the
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Table 12. Training details for supervised methods on ACDC.
Method Base LR Training epochs

RefineNet 5× 10−5 60
DeepLabv2 2.5× 10−4 60
DeepLabv3+ 10−4 60
HRNet 10−4 60
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Figure 4. Comparison of Cityscapes→ACDC to other do-
main adaptation benchmarks. We compare the perfor-
mance of state-of-the-art domain adaptation methods on three
benchmarks: GTA5→Cityscapes, SYNTHIA→Cityscapes, and
Cityscapes→ACDC. Performance of models trained only on the
source domain (Source) and on the target domain with supervision
(Oracle) is also presented. “AdaptSeg”: AdaptSegNet.

default configuration for each method both in the case of
condition experts and uber models. For DeepLabv2 [5], we
use the architecture employed in AdaptSegNet [43] in the
context of domain adaptation and not the original architec-
ture. We have used the default learning rate schedule for
each method, with the base learning rates that are reported
in Table 12. We generally use 60 training epochs for all four
methods, which yields 96k training iterations for uber mod-
els and 24k training iterations for condition experts. Ex-
ceptions to this rule are RefineNet and fog where we use
30 epochs, DeepLabv2 and fog where we use 45 epochs,
DeepLabv2 and night where we use 240 epochs, and the
DeepLabv3+ uber model for which we use 30 epochs. For
HRNet, we use the snapshot with the best mIoU perfor-
mance on the respective validation set of ACDC for pre-
dicting on the test set, while for the rest of the methods we
use the final training snapshot for the same purpose.

A.3. Uncertainty-Aware Semantic Segmentation

We have used the two-head model designed in [1] and
trained it on the entire training set of ACDC for 60 epochs.
We use the default learning rate schedule of [1], with a base
learning rate of 4× 10−4, which is equal to the default. For
predicting on the test set, we use the final training snapshot.

B. Comparison to Other Adaptation Bench-
marks

In Fig. 4, we present the comparative performance of
the eight UDA methods we have used in Table 2 on
two additional popular domain adaptation benchmarks, i.e.
GTA5→Cityscapes and SYNTHIA→Cityscapes. All ex-
amined methods have been configured to optimize per-
formance on the synthetic-to-real UDA setting of these
two benchmarks, but this configuration does not general-
ize well to the real-world normal-to-adverse adaptation set-
ting of Cityscapes→ACDC, as most methods cannot im-
prove significantly upon the source-trained baseline. Fur-
thermore, the comparative performance of the various meth-
ods on either of the synthetic-to-real benchmarks does
not correlate well with the comparative performance on
Cityscapes→ACDC. This indicates that adaptation strate-
gies that work well for the synthetic-to-real setting may not
be as beneficial in the real-world normal-to-adverse adapta-
tion setting and that new strategies and algorithms need to
be devised for the latter.

C. Detailed Class-level Results
We provide class-level performance for the experiments

for which only mean performance over all classes is re-
ported in the paper due to space limitations.

C.1. Normal-to-Adverse Adaptation

In Tables 13–16, we present the class-level IoU perfor-
mance of the UDA methods that are examined in the setting
of adaptation to individual conditions in Table 3 of the pa-
per.

C.2. Evaluation of Pre-trained Models on ACDC

In Tables 17–21, we present the class-level IoU perfor-
mance of the externally pre-trained models that are evalu-
ated in Table 4 of the paper.

C.3. Supervised Learning on Adverse Conditions

In Tables 22–25, we present the class-level IoU perfor-
mance of the supervised semantic segmentation methods
that are examined in Table 6 of the paper. In particular, we
consider the individual conditions of ACDC separately for
evaluation, and evaluate on each condition both the respec-
tive condition experts that have been trained only on that
condition and uber models trained on all conditions.

C.4. Uncertainty-aware Semantic Segmentation

In Tables 26–30, we present the class-level average
uncertainty-aware IoU (AUIoU) performance of the base-
lines and oracles that are examined in Table 9 of the pa-
per. More specifically, Table 26 considers methods trained



Table 13. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→ACDC adaptation for fog. Per-
formance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle)
is also reported.
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Source model 66.4 31.2 26.8 22.9 18.6 8.2 32.3 10.7 70.7 39.0 31.3 17.6 41.1 65.0 30.0 34.3 18.3 42.3 29.0 33.5

AdaptSegNet 35.4 45.9 35.4 25.6 17.5 9.0 32.5 23.1 70.5 47.4 11.6 22.3 28.2 44.4 43.9 35.0 46.0 15.6 15.0 31.8
ADVENT 44.2 38.9 26.4 20.7 20.1 7.9 34.4 23.6 70.7 35.6 8.3 17.3 43.5 60.0 48.6 46.8 40.5 19.9 17.6 32.9
BDL 36.9 37.8 47.0 28.2 21.6 13.7 37.2 34.5 67.2 49.4 27.6 29.1 51.3 58.5 49.4 51.8 30.3 21.4 22.5 37.7
CLAN 48.8 41.3 29.6 27.2 21.0 16.1 41.1 39.6 67.7 50.2 15.4 36.2 30.8 72.2 52.2 54.4 47.2 27.1 22.6 39.0
FDA 68.8 37.3 27.1 27.6 19.8 21.6 37.5 43.3 74.9 43.7 33.1 35.0 21.5 65.7 44.6 45.3 47.1 41.5 15.8 39.5
SIM 76.7 43.1 23.5 23.6 17.9 10.9 32.1 15.3 70.4 50.5 21.4 34.8 44.3 58.4 50.5 55.2 34.7 23.0 8.8 36.6
MRNet 78.6 26.1 19.6 29.0 13.5 12.0 41.9 49.0 78.2 59.0 6.6 39.8 26.1 72.5 44.8 37.9 59.6 19.1 24.1 38.8

Oracle 89.9 65.6 81.2 39.1 25.9 28.1 45.9 47.7 83.0 67.4 96.7 35.2 38.4 73.5 46.1 29.8 37.9 28.4 31.6 52.2

Table 14. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→ACDC adaptation for night-
time. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.
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Source model 77.0 22.9 56.3 13.5 9.2 23.8 22.9 25.6 41.4 16.1 2.9 44.1 17.5 64.1 11.9 34.5 42.4 22.6 22.7 30.1

AdaptSegNet 84.9 39.9 66.8 17.2 17.7 13.4 17.6 16.4 39.6 16.1 5.7 42.8 21.4 44.8 11.9 13.0 39.1 27.5 28.4 29.7
ADVENT 86.5 45.3 60.8 23.2 12.5 15.4 18.0 19.4 41.2 18.3 2.7 43.8 21.3 61.6 12.6 19.1 43.0 30.2 27.6 31.7
BDL 87.1 49.6 68.8 20.2 17.5 16.7 19.9 24.1 39.1 23.7 0.2 42.0 20.4 63.7 18.0 27.0 45.6 27.8 31.3 33.8
CLAN 82.3 28.8 65.9 15.1 9.3 22.1 16.1 26.5 39.2 23.4 0.4 45.9 25.4 63.6 9.5 24.2 39.8 31.5 31.1 31.6
FDA 82.7 39.4 57.0 14.7 7.6 26.1 37.8 30.5 53.2 14.0 15.3 48.0 28.8 62.6 26.6 47.5 51.5 27.0 35.0 37.1
SIM 87.0 48.4 42.1 6.3 8.3 15.8 8.4 17.6 21.7 22.8 0.1 39.3 22.1 60.3 8.7 18.2 42.3 30.1 32.9 28.0
MRNet 83.6 36.3 65.6 8.1 8.2 21.5 30.0 23.7 39.4 24.2 0.0 44.1 26.0 64.9 0.8 3.6 7.6 10.3 31.8 27.9

Oracle 90.5 63.7 78.0 30.0 29.6 32.9 37.0 41.2 61.9 25.2 75.3 47.9 23.4 69.5 2.7 15.4 60.3 39.7 37.9 45.4

Table 15. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→ACDC adaptation for rain.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.
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Source model 71.2 26.7 73.8 20.8 27.1 29.9 39.3 44.4 87.3 25.2 82.0 42.0 14.3 76.2 36.3 26.6 49.8 30.3 42.2 44.5

AdaptSegNet 81.2 43.2 83.3 27.3 31.4 23.0 41.4 40.5 87.2 35.0 93.1 40.2 15.5 73.9 45.7 34.9 57.0 27.1 49.1 49.0
ADVENT 77.0 31.0 52.5 35.0 34.2 23.4 42.1 41.0 85.3 34.2 26.7 41.3 14.1 75.6 47.3 40.4 64.3 29.6 46.2 44.3
BDL 79.1 39.0 82.8 30.0 34.5 28.1 40.1 47.3 87.0 28.7 91.8 40.6 17.8 74.6 46.3 36.7 60.4 33.2 46.3 49.7
CLAN 77.5 40.0 46.8 24.9 30.3 28.1 37.7 48.3 83.8 37.0 6.6 45.7 17.4 79.7 43.7 42.9 63.7 35.0 46.1 44.0
FDA 76.6 45.0 82.9 37.0 35.6 34.8 49.8 52.0 88.7 37.8 88.8 43.6 17.4 76.8 46.5 53.6 64.8 34.5 45.5 53.3
SIM 76.6 29.6 85.7 20.4 28.7 21.3 37.4 34.2 87.3 34.8 94.0 29.4 16.6 73.2 46.1 22.3 46.2 21.8 39.3 44.5
MRNet 70.5 9.9 46.5 35.6 36.1 36.5 56.4 56.2 90.2 41.3 4.3 53.0 23.5 81.6 39.3 26.7 57.8 43.6 54.5 45.4

Oracle 87.3 63.9 89.0 50.3 40.6 38.4 52.2 53.4 89.2 42.2 96.7 51.5 13.0 81.9 47.9 47.2 72.2 29.1 48.8 57.6

jointly on all conditions of ACDC and also evaluated jointly
on all conditions, while Tables 27–30 present methods
trained and evaluated on individual conditions. The results
corresponding to the baseline that uses constant confidence
equal to 1 are omitted, as they are identical by definition to

IoU results and are thus already included in Table 5 of the
paper and Tables 22–25.



Table 16. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→ACDC adaptation for snow.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.

Method ro
ad

si
de

w
.

bu
ild

.

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
ge

t.

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
c.

bi
cy

cl
e

mIoU

Source model 68.5 26.6 52.7 18.8 26.9 22.2 35.7 40.7 76.5 3.6 49.9 50.4 27.1 73.7 27.6 39.1 60.9 21.1 42.5 40.2

AdaptSegNet 51.3 32.5 47.3 21.5 31.5 13.2 37.8 23.2 76.0 2.6 4.5 49.9 23.1 68.7 38.3 31.8 51.5 21.7 45.0 35.3
ADVENT 50.8 24.8 46.2 15.5 26.0 15.5 27.9 23.0 70.0 2.1 9.5 44.2 25.3 68.5 22.9 24.9 50.1 23.9 38.9 32.1
BDL 42.3 36.4 60.2 15.7 30.4 15.1 41.4 30.4 71.3 1.7 11.2 46.8 27.8 57.7 38.6 34.1 59.2 28.1 43.7 36.4
CLAN 71.8 26.0 37.3 12.5 27.0 21.1 32.0 41.1 78.5 1.9 0.9 50.9 23.9 82.4 43.2 39.5 61.6 25.2 39.4 37.7
FDA 74.6 30.9 56.1 20.5 34.8 28.7 53.9 47.8 80.5 1.1 55.9 53.1 37.9 79.7 40.5 51.9 67.4 34.3 41.8 46.9
SIM 72.1 26.7 39.4 13.3 29.5 15.3 26.4 17.9 76.4 4.8 5.1 45.9 32.0 76.2 29.8 26.6 48.3 23.2 24.2 33.3
MRNet 67.7 3.5 36.8 8.3 24.8 18.0 52.6 55.4 82.4 0.5 0.1 62.2 30.2 79.2 32.1 59.3 58.4 29.1 35.8 38.7

Oracle 89.1 61.7 82.7 26.4 40.9 35.5 56.5 54.1 85.2 39.0 95.1 55.0 25.7 84.3 38.6 53.8 77.6 29.0 49.5 56.8

Table 17. Comparison of externally pre-trained models on the complete test set of ACDC including all conditions. The three groups of
rows present models pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF:
Foggy Cityscapes-DBF, FZ: Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 66.3 28.9 67.6 19.2 25.9 36.7 50.0 47.5 69.4 28.8 83.0 42.1 17.7 72.6 30.9 31.6 48.9 26.1 36.7 43.7
DeepLabv2 CS 71.9 26.2 51.1 18.8 22.5 19.7 33.0 27.7 67.9 28.6 44.2 43.1 22.1 71.2 29.8 33.3 48.4 26.2 35.8 38.0
DeepLabv3+ CS 75.1 32.8 65.9 17.5 20.2 32.2 46.7 45.2 70.5 33.5 80.9 23.9 14.7 71.5 40.1 20.3 51.2 20.2 28.8 41.6
DANet CS 58.0 6.0 57.3 6.8 22.3 27.7 41.3 42.1 66.4 19.9 69.2 32.2 10.2 46.5 22.4 19.1 43.1 13.2 25.5 33.1
HRNet CS 55.6 10.9 55.4 7.7 15.9 21.7 37.8 42.5 67.4 13.3 59.0 38.7 14.0 68.3 23.8 48.0 48.3 17.9 23.6 35.3

SFSU FC 72.9 28.8 68.3 19.6 23.9 37.3 49.3 47.0 60.4 33.4 72.3 43.1 14.8 72.7 31.7 31.2 47.0 25.4 35.5 42.9
CMAda FC-DBF+FZ 79.9 32.5 69.5 14.7 24.7 41.1 53.6 51.3 67.4 34.8 83.8 49.0 19.9 77.0 34.1 38.5 51.1 29.6 42.7 47.1

DMAda ND 75.3 35.5 67.4 19.2 27.1 40.0 53.7 50.9 74.6 30.9 84.9 48.8 23.1 76.6 39.7 37.4 52.5 29.1 42.1 47.9
GCMA CS+DZ 79.7 48.7 71.5 21.6 29.9 42.5 56.7 57.7 75.8 39.5 87.2 57.4 29.7 80.6 44.9 46.2 62.0 37.2 46.5 53.4
MGCDA CS+DZ 76.0 49.4 72.0 11.3 21.7 39.5 52.0 54.9 73.7 24.7 88.6 54.1 27.2 78.2 30.9 41.9 58.2 31.1 44.4 48.9

Table 18. Comparison of externally pre-trained models on ACDC for fog. The three groups of rows present models pre-trained on
normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 64.4 40.0 69.6 24.2 19.7 36.5 52.7 55.2 71.1 35.4 93.9 27.4 19.2 72.7 42.0 42.1 69.3 30.3 15.8 46.4
DeepLabv2 CS 66.4 31.2 26.8 22.9 18.6 8.2 32.3 10.7 70.7 39.0 31.3 17.6 41.1 65.0 30.0 34.3 18.3 42.3 29.0 33.5
DeepLabv3+ CS 82.3 57.6 61.5 18.1 16.4 33.3 49.6 54.5 76.0 44.1 90.0 9.6 28.7 69.0 35.1 34.5 28.9 41.7 37.5 45.7
DANet CS 52.1 14.5 49.7 5.5 16.9 30.0 47.9 51.5 72.2 23.3 80.1 24.2 3.0 44.7 32.4 27.5 65.1 10.8 7.7 34.7
HRNet CS 57.3 19.3 49.1 12.8 17.8 27.3 44.0 54.7 72.8 15.5 81.7 28.3 3.9 66.6 28.4 52.0 72.7 7.2 18.1 38.4

SFSU FC 72.3 37.9 74.4 28.9 19.3 37.5 49.4 54.6 58.0 43.7 77.9 28.6 5.3 73.6 42.4 44.0 72.7 31.4 14.9 45.6
CMAda FC-DBF+FZ 81.7 43.5 72.8 25.6 19.5 39.8 51.0 58.9 80.5 51.3 95.3 36.9 12.7 76.5 45.2 51.2 77.1 33.2 19.9 51.2

DMAda ND 75.5 44.7 72.6 26.4 20.8 38.3 52.9 57.8 75.9 38.6 96.3 35.5 26.8 75.8 47.7 50.7 73.9 35.8 17.3 50.7
GCMA CS+DZ 80.8 53.5 70.1 29.2 20.7 38.4 53.0 60.9 70.2 46.5 95.4 44.2 38.0 76.6 52.4 49.7 56.8 41.0 17.6 52.4
MGCDA CS+DZ 71.7 47.3 65.7 18.2 15.3 34.4 48.6 59.9 64.9 24.7 95.4 44.8 23.8 73.3 36.1 45.4 63.9 23.9 15.4 45.9

D. Additional Details on ACDC Dataset

We provide additional details on the construction and the
characteristics of ACDC. We have implemented a website
and evaluation server for the ACDC benchmark and have
made it publicly available. An indicative screenshot from

the submission page of the website is provided in Fig. 6.

D.1. Collection

Our recordings were performed in Switzerland. There-
fore, the geographic distribution of ACDC is similar to
Cityscapes, which was also recorded in central Europe.



Table 19. Comparison of externally pre-trained models on ACDC for nighttime. The three groups of rows present models pre-trained
on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 66.5 24.0 50.3 16.9 11.6 26.4 34.2 25.5 44.2 21.6 0.1 40.8 24.8 57.4 6.8 37.3 20.5 23.9 19.1 29.0
DeepLabv2 CS 77.0 22.9 56.3 13.5 9.2 23.8 22.9 25.6 41.4 16.1 2.9 44.1 17.5 64.1 11.9 34.5 42.4 22.6 22.7 30.1
DeepLabv3+ CS 73.0 20.8 50.4 22.2 5.4 22.6 31.8 23.0 42.9 16.1 6.6 19.2 11.7 48.9 0.9 13.9 42.4 10.5 13.7 25.0
DANet CS 67.1 4.5 46.7 5.5 5.1 13.1 29.3 19.6 36.6 15.6 0.1 29.3 12.4 29.1 4.5 12.3 9.0 10.3 13.3 19.1
HRNet CS 50.0 10.1 59.9 0.7 6.0 14.2 25.6 22.3 19.1 3.4 0.1 37.6 7.9 49.4 6.9 45.9 13.9 7.8 11.3 20.6

SFSU FC 76.9 26.2 50.4 18.1 9.6 27.4 33.3 25.3 41.0 21.5 0.0 41.5 25.3 58.7 7.3 40.7 17.9 22.0 17.9 29.5
CMAda FC-DBF+FZ 82.6 25.4 53.9 10.1 11.2 30.5 36.7 30.0 38.7 16.5 0.1 46.0 26.2 65.8 13.9 50.9 20.4 24.8 23.8 32.0

DMAda ND 74.7 29.5 49.4 17.1 12.6 31.0 38.2 30.0 48.0 22.8 0.2 47.0 25.4 63.8 12.8 46.1 23.1 24.7 24.6 32.7
GCMA CS+DZ 78.6 45.9 58.5 17.7 18.6 37.5 43.6 43.5 58.7 39.2 22.4 57.9 29.9 72.1 21.5 56.2 41.8 35.7 35.4 42.9
MGCDA CS+DZ 74.5 52.5 69.4 7.7 10.8 38.4 40.2 43.3 61.5 36.3 37.6 55.3 25.6 71.2 10.9 46.4 32.6 27.3 33.8 40.8
DANNet CS+DZ 90.7 61.1 75.5 35.9 28.8 26.6 31.4 30.6 70.8 39.4 78.7 49.9 28.8 65.9 24.7 44.1 61.1 25.9 34.5 47.6

Table 20. Comparison of externally pre-trained models on ACDC for rain. The three groups of rows present models pre-trained on
normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ: Foggy
Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 73.9 29.9 82.9 26.3 37.2 46.3 61.8 57.9 89.4 42.5 96.6 44.2 13.2 80.5 40.7 22.9 66.8 32.0 53.5 52.6
DeepLabv2 CS 71.2 26.7 73.8 20.8 27.1 29.9 39.3 44.4 87.3 25.2 82.0 42.0 14.3 76.2 36.3 26.6 49.8 30.3 42.2 44.5
DeepLabv3+ CS 74.4 29.8 82.3 18.1 28.8 41.7 54.3 55.6 88.7 32.8 97.2 36.7 8.5 84.7 51.7 34.0 61.5 29.7 40.0 50.0
DANet CS 59.9 2.4 75.9 12.9 31.5 37.7 49.5 53.3 85.5 35.5 91.1 35.4 8.4 53.5 26.0 16.4 57.8 17.9 38.9 41.5
HRNet CS 65.0 6.7 70.3 16.1 20.2 29.5 48.5 54.7 87.5 36.1 80.1 40.6 8.6 78.2 34.1 44.6 67.3 29.4 34.6 44.8

SFSU FC 74.6 29.9 81.4 24.1 33.8 46.2 59.9 56.7 86.8 40.8 93.4 46.4 15.1 80.5 40.5 18.6 65.7 33.6 52.5 51.6
CMAda FC-DBF+FZ 78.1 34.8 80.7 18.9 33.3 50.0 63.1 62.2 87.4 38.8 96.6 51.1 16.9 83.3 37.9 21.9 68.7 36.5 55.1 53.4

DMAda ND 78.3 37.7 82.5 24.2 36.8 49.0 64.5 61.5 90.6 42.8 97.3 49.6 18.2 83.4 45.1 21.6 70.2 35.2 54.8 54.9
GCMA CS+DZ 81.1 48.0 84.8 25.0 37.3 49.8 66.5 66.2 92.1 43.5 97.6 54.5 20.4 85.5 47.3 34.6 71.3 40.3 56.7 58.0
MGCDA CS+DZ 80.5 46.5 79.9 16.0 28.8 44.9 60.0 61.5 90.3 44.8 97.1 51.1 23.1 82.3 33.4 30.2 69.1 36.5 53.8 54.2

Table 21. Comparison of externally pre-trained models on ACDC for snow. The three groups of rows present models pre-trained on
normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ: Foggy
Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 61.0 25.5 73.7 11.7 31.1 37.2 53.1 57.7 71.3 0.9 92.7 44.1 14.7 77.0 30.3 26.9 57.2 18.4 38.5 43.3
DeepLabv2 CS 68.5 26.6 52.7 18.8 26.9 22.2 35.7 40.7 76.5 3.6 49.9 50.4 27.1 73.7 27.6 39.1 60.9 21.1 42.5 40.2
DeepLabv3+ CS 73.9 32.6 71.3 11.1 25.6 31.4 50.6 54.4 77.8 4.1 87.0 25.1 14.6 82.7 39.5 17.2 55.2 12.0 31.2 42.0
DANet CS 47.6 5.4 57.5 2.9 29.1 29.3 41.4 51.2 71.1 0.5 64.8 32.7 11.7 56.5 14.5 27.9 53.7 8.1 25.9 33.3
HRNet CS 59.6 9.3 43.9 4.0 17.8 17.6 35.6 47.0 77.0 0.0 32.5 39.4 39.2 74.2 13.4 54.0 61.1 15.9 26.1 35.1

SFSU FC 64.5 24.0 72.6 10.9 28.8 37.8 54.9 58.1 62.4 0.8 78.4 44.2 9.5 76.0 29.5 25.6 55.2 16.7 37.3 41.4
CMAda FC-DBF+FZ 74.6 31.6 73.6 9.4 30.3 43.1 61.9 61.7 75.7 0.7 93.5 53.1 19.1 79.6 29.7 31.6 61.9 22.9 50.3 47.6

DMAda ND 73.6 34.4 74.9 12.3 33.4 41.1 58.4 60.1 79.9 0.6 95.4 53.1 23.0 80.4 40.3 34.5 62.9 22.7 48.6 48.9
GCMA CS+DZ 79.7 49.5 75.3 17.5 37.9 43.2 59.0 61.9 78.8 2.2 95.5 62.5 33.6 83.2 42.5 43.4 72.1 32.2 51.1 53.7
MGCDA CS+DZ 80.1 49.5 70.2 6.1 27.8 39.6 55.4 58.0 76.0 0.3 95.5 57.5 35.7 81.0 28.6 48.9 70.3 27.8 50.5 50.5

This eliminates geographic location from the set of fac-
tors that introduce a domain shift between Cityscapes and
ACDC and allows to study in isolation the effect of visual
conditions at time of capture on the performance of seman-
tic segmentation methods, both in the supervised setting and
the unsupervised domain adaptation setting.

D.2. Correspondence Establishment

We present in Algorithm 1 the dynamic programming
algorithm that we use for matching the GPS sequences of
adverse-condition recordings and normal-condition record-
ings of ACDC. The algorithm takes into account the sequen-



Table 22. Comparison of state-of-the-art supervised methods on ACDC for fog. The first group of rows presents condition-specific
expert models trained only on fog, while the second group presents uber models trained on all conditions.
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RefineNet 93.2 75.5 86.1 44.1 37.6 46.0 64.2 64.8 85.5 70.8 97.9 46.1 34.8 79.3 59.4 64.8 82.4 36.6 38.8 63.6
DeepLabv2 89.9 65.6 81.2 39.1 25.9 28.1 45.9 47.7 83.0 67.4 96.7 35.2 38.4 73.5 46.1 29.8 37.9 28.4 31.6 52.2
DeepLabv3+ 93.8 77.4 88.8 51.0 43.3 54.2 68.2 71.7 87.7 74.6 98.2 53.5 32.1 83.8 69.3 84.4 85.3 47.2 40.1 68.7
HRNet 94.6 79.6 89.9 53.6 44.9 59.4 74.3 76.1 88.9 77.6 98.3 61.5 53.3 86.0 66.6 80.0 88.5 41.1 30.2 70.8

RefineNet 93.5 75.6 87.2 42.3 39.2 49.8 68.5 67.2 85.6 70.1 97.9 52.6 48.2 81.0 62.6 62.0 69.1 57.7 37.4 65.7
DeepLabv2 90.9 67.2 81.6 38.7 29.5 29.7 51.2 50.7 81.4 61.9 96.0 34.8 40.5 74.1 53.4 53.1 59.9 8.3 32.5 54.5
DeepLabv3+ 93.6 77.6 89.2 54.0 44.8 55.8 67.6 72.0 88.0 73.5 98.2 49.5 24.4 83.9 72.2 84.2 89.2 52.8 42.4 69.1
HRNet 94.9 81.0 90.5 58.9 53.7 61.9 79.0 78.7 89.3 78.7 98.3 63.2 54.6 87.2 72.3 87.8 90.6 58.7 38.9 74.7

Table 23. Comparison of state-of-the-art supervised methods on ACDC for nighttime. The first group of rows presents condition-
specific expert models trained only on nighttime, while the second group presents uber models trained on all conditions.
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RefineNet 93.4 70.3 78.6 34.3 34.1 46.9 52.2 54.2 66.3 18.7 78.1 60.3 35.5 76.2 4.7 47.8 59.4 36.0 45.3 52.2
DeepLabv2 90.5 63.7 78.0 30.0 29.6 32.9 37.0 41.2 61.9 25.2 75.3 47.9 23.4 69.5 2.7 15.4 60.3 39.7 37.9 45.4
DeepLabv3+ 94.7 75.9 85.0 48.4 38.6 52.2 55.8 54.4 76.1 30.3 84.2 67.4 41.1 85.0 8.3 62.3 80.6 35.6 49.8 59.2
HRNet 95.5 78.8 86.5 49.2 44.1 58.0 64.5 63.2 75.6 41.0 83.9 71.7 48.8 84.6 15.5 76.9 81.2 25.9 55.9 63.2

RefineNet 93.5 70.9 80.3 32.0 32.0 46.0 53.9 54.1 69.2 31.9 78.0 61.0 35.4 80.2 11.6 60.0 69.4 48.9 46.8 55.5
DeepLabv2 86.6 57.8 71.7 30.3 23.6 31.8 37.4 38.9 60.0 26.8 72.8 47.6 25.1 71.1 16.9 27.8 65.1 30.6 38.5 45.3
DeepLabv3+ 94.7 75.3 84.9 46.9 37.8 53.8 57.3 52.1 75.7 41.2 82.9 66.6 40.2 83.6 24.7 67.9 80.8 41.7 49.4 60.9
HRNet 95.7 79.0 86.2 46.8 43.5 59.2 64.9 64.5 75.3 40.3 82.7 72.1 52.6 86.9 18.8 78.8 83.6 52.5 57.3 65.3

Table 24. Comparison of state-of-the-art supervised methods on ACDC for rain. The first group of rows presents condition-specific
expert models trained only on rain, while the second group presents uber models trained on all conditions.
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RefineNet 89.2 69.8 91.7 52.2 51.3 57.9 71.0 69.9 93.6 50.5 98.4 65.8 25.1 88.1 49.4 55.4 74.8 47.0 60.2 66.4
DeepLabv2 87.3 63.9 89.0 50.3 40.6 38.4 52.2 53.4 89.2 42.2 96.7 51.5 13.0 81.9 47.9 47.2 72.2 29.1 48.8 57.6
DeepLabv3+ 92.8 77.4 93.9 67.3 58.1 64.1 74.4 75.9 94.2 50.8 98.6 70.8 33.4 90.4 67.7 79.2 86.8 54.6 66.1 73.5
HRNet 94.8 81.8 94.9 69.6 63.7 69.5 79.6 80.7 94.8 51.2 98.7 73.5 27.0 93.1 75.4 40.9 61.4 59.6 70.8 72.7

RefineNet 91.5 73.5 91.1 51.0 51.6 58.3 72.5 73.7 92.9 51.2 97.9 65.5 29.5 89.2 59.8 68.2 80.3 48.0 59.5 68.7
DeepLabv2 87.4 64.8 88.1 48.2 40.4 38.4 52.0 56.9 89.3 40.2 96.5 52.3 17.4 83.9 55.5 63.0 75.8 28.9 47.2 59.3
DeepLabv3+ 92.7 76.5 93.5 64.8 58.0 63.8 75.8 77.3 94.1 50.0 98.0 70.5 33.1 91.2 75.9 85.1 86.2 55.8 65.0 74.1
HRNet 95.6 83.1 94.2 60.1 66.3 71.2 82.3 82.4 94.6 55.1 98.6 75.2 39.7 93.4 73.8 86.2 85.9 66.4 71.3 77.7

Table 25. Comparison of state-of-the-art supervised methods on ACDC for snow. The first group of rows presents condition-specific
expert models trained only on snow, while the second group presents uber models trained on all conditions.
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RefineNet 90.1 65.7 86.4 31.2 48.1 58.0 76.7 70.3 89.7 45.7 97.3 70.8 15.4 87.1 35.0 43.1 79.1 38.7 59.9 62.5
DeepLabv2 89.1 61.7 82.7 26.4 40.9 35.5 56.5 54.1 85.2 39.0 95.1 55.0 25.7 84.3 38.6 53.8 77.6 29.0 49.5 56.8
DeepLabv3+ 91.9 70.9 90.1 48.9 52.0 62.2 79.2 74.5 92.0 47.0 97.6 78.2 35.9 90.4 61.7 64.3 89.2 43.9 69.4 70.5
HRNet 93.6 75.2 89.0 42.0 55.6 67.7 83.3 78.9 93.0 48.9 97.8 78.1 16.4 92.6 54.8 61.6 87.0 50.0 68.9 70.2

RefineNet 90.2 65.7 86.5 33.7 50.6 57.8 78.0 71.5 89.2 44.5 97.0 73.8 46.0 88.4 50.0 48.0 79.9 40.6 60.3 65.9
DeepLabv2 88.7 62.5 82.5 35.3 41.7 35.0 59.0 52.8 84.4 36.0 95.2 58.1 29.8 84.8 48.9 30.9 77.9 32.9 48.4 57.1
DeepLabv3+ 91.4 69.6 88.8 48.8 53.9 60.6 79.5 72.9 90.5 44.7 97.4 77.4 37.2 90.0 64.3 55.0 87.8 41.7 70.0 69.6
HRNet 94.4 77.3 91.5 53.1 63.6 70.2 85.1 81.4 92.1 57.7 97.7 83.3 69.6 93.6 71.8 54.5 86.3 52.7 73.1 76.3

tial nature of the GPS measurements from the two record-
ings in computing the correspondence function A. In par-
ticular, we enforce k < i ⇒ A(k) ≤ A(i). That is, for

a given sample i of the adverse-condition sequence P , its
matched sample A(i) of the normal-condition sequence R
is restricted to not precede in time any sample of R that has



Table 26. Uncertainty-aware semantic segmentation baseline results on the complete test set of ACDC including all conditions.
Supervised methods for standard semantic segmentation are trained and evaluated jointly on all conditions for semantic label prediction.
Confidence prediction baselines: max-softmax network outputs (Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet Max-Softmax 91.3 67.6 84.4 34.3 42.1 49.9 64.7 64.2 85.8 54.6 95.3 59.6 34.4 84.6 51.9 60.6 70.6 43.3 48.9 62.5
RefineNet GT 92.9 73.1 89.1 43.1 50.7 57.0 72.9 70.7 90.1 63.4 97.7 67.6 43.1 87.3 57.3 61.4 77.1 54.1 58.3 68.8
DeepLabv2 Max-Softmax 87.1 60.4 79.7 36.1 35.7 32.6 47.3 48.7 80.2 49.2 92.2 49.0 24.7 79.0 51.1 43.3 72.3 26.3 45.1 54.7
DeepLabv2 GT 88.5 64.4 84.2 40.9 41.8 37.8 54.0 54.2 86.4 54.9 96.0 53.6 30.3 81.8 52.5 42.7 73.6 33.3 47.6 58.9
DeepLabv3+ Max-Softmax 92.1 71.3 88.2 49.0 47.3 54.9 68.7 65.6 88.0 60.7 96.0 65.0 33.9 87.5 66.7 72.6 81.3 43.8 55.0 67.8
DeepLabv3+ GT 93.8 76.5 91.4 56.6 55.4 62.3 75.0 72.3 91.8 66.5 98.0 72.0 41.0 89.5 71.1 74.0 86.5 55.4 63.7 73.3

Table 27. Uncertainty-aware semantic segmentation baseline results on ACDC for fog. Supervised methods for standard semantic
segmentation are trained and evaluated on fog for semantic label prediction. Confidence prediction baselines: max-softmax network
outputs (Max-Softmax) and ground-truth invalid masks (GT).

Method Confidence ro
ad

si
de

w
.

bu
ild

.

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
ge

t.

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
c.

bi
cy

cl
e

mAUIoU

RefineNet Max-Softmax 92.6 71.9 82.9 40.7 35.8 42.7 62.1 62.6 84.1 64.1 97.5 45.0 26.8 77.1 57.8 59.9 79.8 35.2 33.4 60.6
RefineNet GT 93.4 76.5 87.6 48.7 45.5 49.4 68.2 68.9 87.3 73.0 98.1 55.6 40.3 80.9 61.3 65.4 83.7 53.6 51.7 67.9
DeepLabv2 Max-Softmax 89.7 63.0 79.2 39.4 25.9 25.0 41.4 46.6 82.5 66.7 95.6 36.4 35.6 72.7 49.5 29.6 44.5 29.2 33.3 51.9
DeepLabv2 GT 90.2 66.7 82.8 44.2 35.3 31.5 49.5 52.2 84.8 69.4 96.9 44.2 44.5 76.0 48.3 30.1 39.0 48.0 42.7 56.7
DeepLabv3+ Max-Softmax 92.9 74.8 87.2 51.3 41.7 49.9 65.6 69.8 87.1 72.3 97.6 51.9 27.1 82.8 67.4 79.1 84.1 42.6 36.4 66.4
DeepLabv3+ GT 93.9 78.3 90.0 55.5 52.0 57.9 72.3 75.9 89.2 76.6 98.4 63.2 38.5 85.0 71.7 85.1 86.7 66.0 53.3 73.1

Table 28. Uncertainty-aware semantic segmentation baseline results on ACDC for nighttime. Supervised methods for standard se-
mantic segmentation are trained and evaluated on nighttime for semantic label prediction. Confidence prediction baselines: max-softmax
network outputs (Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet Max-Softmax 92.3 66.4 78.6 31.8 37.2 46.2 48.3 53.3 73.5 16.9 83.6 54.9 34.6 77.4 8.5 43.1 53.6 35.2 41.6 51.4
RefineNet GT 93.6 72.4 88.2 42.0 53.0 55.5 61.6 61.7 89.0 31.3 97.1 63.3 41.9 80.0 18.2 50.3 60.8 49.5 51.9 61.1
DeepLabv2 Max-Softmax 90.2 62.2 78.6 29.9 32.9 33.7 36.5 40.3 65.6 25.2 77.9 45.2 23.2 70.2 5.0 14.6 62.1 40.3 38.8 45.9
DeepLabv2 GT 90.8 65.8 87.2 37.8 45.3 43.3 48.1 49.6 87.8 37.5 97.0 51.1 29.8 74.3 17.3 17.3 63.0 51.8 43.8 54.7
DeepLabv3+ Max-Softmax 93.8 73.3 85.2 47.0 43.4 51.3 53.7 54.3 80.7 28.7 87.9 62.1 40.9 84.8 10.4 65.2 78.8 34.7 47.2 59.1
DeepLabv3+ GT 94.9 77.5 91.5 54.7 53.4 60.2 64.8 62.5 92.7 41.3 98.5 70.2 49.3 88.3 22.4 65.5 82.4 50.5 55.0 67.1

Table 29. Uncertainty-aware semantic segmentation baseline results on ACDC for rain. Supervised methods for standard semantic
segmentation are trained and evaluated on rain for semantic label prediction. Confidence prediction baselines: max-softmax network
outputs (Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet Max-Softmax 86.0 67.8 89.9 44.9 45.7 53.2 65.1 67.3 92.1 48.4 97.8 58.6 23.6 86.6 44.1 53.1 65.6 40.3 56.6 62.5
RefineNet GT 89.5 70.8 92.1 54.1 53.2 59.9 72.6 72.3 93.9 52.1 98.4 67.4 26.6 88.7 52.4 56.4 75.5 51.4 62.9 67.9
DeepLabv2 Max-Softmax 85.9 62.3 87.2 48.3 38.9 35.8 48.6 51.5 87.3 41.8 95.9 47.2 13.5 80.8 46.2 50.2 69.3 23.9 50.0 56.0
DeepLabv2 GT 87.8 65.1 89.4 52.1 42.5 40.2 53.7 56.1 89.6 43.6 96.8 53.4 13.8 82.7 50.2 48.1 72.9 33.3 51.4 59.1
DeepLabv3+ Max-Softmax 91.2 75.3 92.8 62.2 53.7 60.0 71.3 72.2 93.2 50.0 98.0 65.4 30.8 90.0 63.5 77.0 83.1 48.0 63.9 70.6
DeepLabv3+ GT 93.2 78.4 94.2 68.8 60.0 66.0 75.8 78.2 94.5 52.5 98.6 72.4 35.0 91.0 70.4 80.4 87.4 58.8 69.0 75.0

been matched to a sample k of P that precedes i. This con-
straint is based on the fact that the routes of the two record-
ings are driven in the same direction and thus in the same
order. Consequently, for routes that contain loops, our for-
mulation prevents the matching of samples that are nearest
neighbors but correspond to different passes from the same
location and are thus potentially associated with different

driving directions and 3D rotations of the camera.

D.3. Annotation

In Fig. 5, we show the percentage of the pixels of each
semantic class in ACDC that are marked as invalid in the
ground-truth invalid mask J . For the majority of the classes,
a notable percentage of more than 5% of the pixels are la-



Table 30. Uncertainty-aware semantic segmentation baseline results on ACDC for snow. Supervised methods for standard semantic
segmentation are trained and evaluated on snow for semantic label prediction. Confidence prediction baselines: max-softmax network
outputs (Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet Max-Softmax 89.1 59.9 83.8 25.8 43.8 53.1 72.6 69.2 88.6 43.5 96.8 65.9 11.7 85.8 39.5 48.4 74.1 36.9 48.8 59.9
RefineNet GT 91.3 69.1 86.8 32.4 49.9 59.0 78.2 72.8 90.0 52.5 97.3 71.8 16.1 87.6 37.6 44.7 79.5 39.8 60.1 64.0
DeepLabv2 Max-Softmax 89.1 61.7 82.7 26.4 40.9 35.5 56.5 54.1 85.2 39.0 95.1 55.0 25.7 84.3 38.6 53.8 77.6 29.0 49.5 56.8
DeepLabv2 GT 90.3 65.1 83.1 27.6 42.7 36.5 57.9 56.7 85.5 46.3 95.1 56.4 26.4 85.0 41.1 55.0 78.2 30.2 49.8 58.4
DeepLabv3+ Max-Softmax 90.6 67.0 88.8 45.1 48.9 57.8 76.6 72.9 90.8 45.7 97.0 74.8 28.4 89.2 63.3 67.8 87.8 36.7 61.1 67.9
DeepLabv3+ GT 92.9 74.0 90.4 50.3 53.9 63.4 80.5 77.4 92.2 53.6 97.6 79.2 36.6 90.9 64.4 65.9 90.0 45.2 69.8 72.0

Algorithm 1 Dynamic programming algorithm for GPS sequence matching
Input: Adverse-condition GPS sequence P = (p1, . . . ,pn), normal-condition GPS sequence R = (r1, . . . , rm)
Output: Correspondence function A : {1, . . . , n} → {1, . . . ,m}

1: . Compute pairwise Euclidean distances of GPS samples
2: dij ← ‖pi − rj‖, 1 ≤ i ≤ n, 1 ≤ j ≤ m
3: . Compute cost matrix C (n×m)
4: C1j ← d1j , 1 ≤ j ≤ m
5: Cij ← min

k≤j
{Ci−1,k}+ dij , 2 ≤ i ≤ n, 1 ≤ j ≤ m

6: . Compute backtracking indices matrix α
7: αij ← argmin

k≤j
{Ci−1,k}, 2 ≤ i ≤ n, 1 ≤ j ≤ m

8: . Backtracking
9: A(n)← argmin

j
{Cnj}

10: A(i)← αi+1,A(i+1), 1 ≤ i ≤ n− 1
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Figure 5. Per-class percentages of labeled pixels that are marked as invalid in ACDC.

beled as invalid, which demonstrates the ability of our spe-
cialized annotation protocol with privileged information to
assign a legitimate semantic label even to invalid regions
with ambiguous semantic content.

The total number of annotated pixels in ACDC is pre-
sented in Table 31. Note that labeled pixels that are marked
as valid in the ground-truth invalid masks J constitute ca.
85% of the total pixels. From the remaining 15% of pixels
that did not receive a legitimate semantic label in stage 1
of the annotation because of their ambiguity, it was possi-
ble to label half of them (7.5%) with a legitimate seman-
tic label in stage 2 of the annotation, by making use of the
additional privileged information in the form of correspond-
ing normal-condition images and original adverse-condition
videos. Note that for stage 2 of the annotation, we explicitly

Table 31. Overall annotation statistics for ACDC. We report the
total number of pixels assigned to a legitimate semantic label (La-
beled) and of pixels not assigned to any semantic label (Unlabeled)
as well as the respective percentages.

Number of pixels Percentage of pixels (%)

Labeled 7.682× 109 92.47
-out of which Valid 7.055× 109 84.93
-out of which Invalid 0.627× 109 7.54
Unlabeled 0.625× 109 7.53

Total 8.307× 109 100.00

set the time budget (excluding quality control) to 20 minutes
and asked the annotators to prioritize labeling of (i) traffic
participants and (ii) distant and/or unclear objects that were



Figure 6. The submission page of our benchmark website. Our
evaluation server supports the two tasks and five condition con-
figurations of ACDC, accepting submissions both for individual
conditions and for all conditions. Best viewed on a screen.

affected the most by the adverse conditions at the time of
capture.


