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A. Training Details

We provide the detailed training configurations for the
various methods for semantic segmentation that have been
used in Sec. 4 of the paper and for the method in [1]
for uncertainty-aware semantic segmentation that has been
used in Sec. 5 of the paper.

A.l. Normal-to-Adverse Adaptation

For the comparison in Table 2, we use as source-
domain model the DeepLabv2 [5] model that is used as
the Cityscapes oracle in AdaptSegNet [43], with a perfor-
mance of 65.1% mloU on the Cityscapes validation set. For
all eight unsupervised domain adaptation (UDA) methods
that are compared, we use their default training configura-
tions, including the learning rate schedule and the weights
of the various losses. The number of training iterations run
for each method as well as the number of self-supervised
learning rounds that are used by some of the methods are
reported in Table 10. For FDA, SIM and MRNet, we run a
first training round without self-training followed by a sec-
ond training round with self-training, as per default imple-
mentation of these methods. For FDA, we train three sep-
arate models in each training round, one for each different
value of the § parameter from the set {0.01, 0.050.09}, and
use the average prediction of the three models at test time.
In all cases, we use the model weights corresponding to the
final training iteration for testing.

The same source-domain model is also used for the ex-
periment on adaptation to individual conditions presented
in Table 3. Again, we use the default training configura-
tions for all examined methods and across all four condi-
tions. The number of training iterations run for each method
to adapt to each condition as well as the number of self-
supervised learning rounds that are used by some of the
methods are reported in Table 11. For MRNet and fog,
the self-supervised training round includes 35k iterations
instead of 40k. In addition, for MRNet and rain, the first

Table 10. Training details for UDA methods in
Cityscapes—ACDC adaptation. “SSL rounds”: number
of training rounds that include supervision from pseudo-labels;
if not relevant for a method, — is reported. “Training iterations’:
number of SGD iterations for each training round (number of
epochs for each training round is alternatively reported).

Method SSL rounds Training iterations
AdaptSegNet - 95k

ADVENT - 80k

BDL 0 80k

CLAN - 90k

CRST 3 2 epochs

FDA 1 80k

SIM 1 80k

MRNet 1 50k

Table 11. Training details for UDA methods in

Cityscapes—ACDC adaptation for individual conditions.
“SSL rounds”: number of training rounds that include supervision
from pseudo-labels; if not relevant for a method, — is reported.
“Training iterations”: number of SGD iterations for each training
round.

Method SSL rounds Training iterations
AdaptSegNet - 40k
ADVENT - 40k
BDL 0 40k
CLAN - 40k
FDA 1 40k
SIM 1 40k
MRNet 1 40k

training round without self-supervised training includes 25k
iterations instead of 40k.

A.2. Supervised Learning on Adverse Conditions

For training the four semantic segmentation methods that
are compared in Tables 5 and 6, we have generally used the



Table 12. Training details for supervised methods on ACDC.

Method Base LR  Training epochs
RefineNet 5 x 1075 60
DeepLabv2 2.5 x 10~* 60
DeepLabv3+  107* 60
HRNet 1074 60
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Figure 4. Comparison of Cityscapes—~ACDC to other do-
main adaptation benchmarks. = We compare the perfor-
mance of state-of-the-art domain adaptation methods on three
benchmarks: GTAS5—Cityscapes, SYNTHIA—Cityscapes, and
Cityscapes—ACDC. Performance of models trained only on the
source domain (Source) and on the target domain with supervision
(Oracle) is also presented. “AdaptSeg”: AdaptSegNet.

default configuration for each method both in the case of
condition experts and uber models. For DeepLabv2 [5], we
use the architecture employed in AdaptSegNet [43] in the
context of domain adaptation and not the original architec-
ture. We have used the default learning rate schedule for
each method, with the base learning rates that are reported
in Table 12. We generally use 60 training epochs for all four
methods, which yields 96k training iterations for uber mod-
els and 24k training iterations for condition experts. Ex-
ceptions to this rule are RefineNet and fog where we use
30 epochs, DeepLabv2 and fog where we use 45 epochs,
DeepLabv2 and night where we use 240 epochs, and the
DeepLabv3+ uber model for which we use 30 epochs. For
HRNet, we use the snapshot with the best mloU perfor-
mance on the respective validation set of ACDC for pre-
dicting on the test set, while for the rest of the methods we
use the final training snapshot for the same purpose.

A.3. Uncertainty-Aware Semantic Segmentation

We have used the two-head model designed in [1] and
trained it on the entire training set of ACDC for 60 epochs.
We use the default learning rate schedule of [1], with a base
learning rate of 4 x 10~4, which is equal to the default. For
predicting on the test set, we use the final training snapshot.

B. Comparison to Other Adaptation Bench-
marks

In Fig. 4, we present the comparative performance of
the eight UDA methods we have used in Table 2 on
two additional popular domain adaptation benchmarks, i.e.
GTAS5—Cityscapes and SYNTHIA—Cityscapes. All ex-
amined methods have been configured to optimize per-
formance on the synthetic-to-real UDA setting of these
two benchmarks, but this configuration does not general-
ize well to the real-world normal-to-adverse adaptation set-
ting of Cityscapes—ACDC, as most methods cannot im-
prove significantly upon the source-trained baseline. Fur-
thermore, the comparative performance of the various meth-
ods on either of the synthetic-to-real benchmarks does
not correlate well with the comparative performance on
Cityscapes—ACDC. This indicates that adaptation strate-
gies that work well for the synthetic-to-real setting may not
be as beneficial in the real-world normal-to-adverse adapta-
tion setting and that new strategies and algorithms need to
be devised for the latter.

C. Detailed Class-level Results

We provide class-level performance for the experiments
for which only mean performance over all classes is re-
ported in the paper due to space limitations.

C.1. Normal-to-Adverse Adaptation

In Tables 13—16, we present the class-level IoU perfor-
mance of the UDA methods that are examined in the setting
of adaptation to individual conditions in Table 3 of the pa-
per.

C.2. Evaluation of Pre-trained Models on ACDC

In Tables 17-21, we present the class-level IoU perfor-
mance of the externally pre-trained models that are evalu-
ated in Table 4 of the paper.

C.3. Supervised Learning on Adverse Conditions

In Tables 22-25, we present the class-level IoU perfor-
mance of the supervised semantic segmentation methods
that are examined in Table 6 of the paper. In particular, we
consider the individual conditions of ACDC separately for
evaluation, and evaluate on each condition both the respec-
tive condition experts that have been trained only on that
condition and uber models trained on all conditions.

C.4. Uncertainty-aware Semantic Segmentation

In Tables 26-30, we present the class-level average
uncertainty-aware IoU (AUIoU) performance of the base-
lines and oracles that are examined in Table 9 of the pa-
per. More specifically, Table 26 considers methods trained



Table 13. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes—ACDC adaptation for fog. Per-
formance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle)
is also reported.

Method mloU

road
sidew.
build
wall
fence
pole
light
sign
veget
terrain
sky
person
rider
car
truck
bus
train
motorc
bicycle

Source model 66.4 31.2 26.8 229 18.6 82 323 10.7 70.7 39.0 31.3 17.6 41.1 65.0 30.0 34.3 183 423 29.0 33.5

AdaptSegNet 35.4 459 354 25.6 17.5 9.0 325 23.1 70.5 474 11.6 223 282 444 439 350 460 156 15.0 31.8
ADVENT 442 389 264 20.7 20.1 79 344 236 70.7 356 83 173 435 60.0 48.6 46.8 40.5 199 17.6 329

BDL 369 37.8 47.0 282 21.6 13.7 37.2 345 672 494 27.6 29.1 513 585 494 51.8 303 214 225 37.7
CLAN 48.8 41.3 29.6 272 21.0 16.1 41.1 39.6 67.7 50.2 154 36.2 30.8 722 522 544 472 27.1 226 39.0
FDA 68.8 373 27.1 27.6 19.8 21.6 37.5 433 749 43.7 33.1 35.0 21.5 65.7 44.6 453 47.1 415 158 395
SIM 76.7 43.1 235 23.6 17.9 109 32.1 153 704 50.5 214 34.8 443 584 50.5 552 347 23.0 88 36.6
MRNet 78.6 26.1 19.6 29.0 13.5 12.0 419 49.0 782 59.0 6.6 39.8 26.1 725 44.8 379 59.6 19.1 24.1 388
Oracle 89.9 65.6 81.2 39.1 259 28.1 459 47.7 83.0 674 96.7 352 384 735 46.1 29.8 379 284 31.6 522

Table 14. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes—ACDC adaptation for night-
time. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.
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Source model 77.0 22.9 56.3 13.5 9.2 23.8 229 25.6 414 16.1 29 441 175 64.1 11.9 345 424 22.6 227 30.1

AdaptSegNet 84.9 399 66.8 17.2 17.7 13.4 17.6 164 39.6 16.1 57 42.8 21.4 448 119 13.0 39.1 275 284 29.7
ADVENT  86.5 453 60.8 232 125 154 18.0 194 412 183 27 438 213 61.6 12.6 19.1 43.0 30.2 27.6 31.7

BDL 87.1 49.6 68.8 20.2 17.5 16.7 199 24.1 39.1 23.7 0.2 42.0 204 63.7 18.0 27.0 45.6 27.8 31.3 33.8
CLAN 82.3 288 659 151 93 221 16.1 265 392 234 04 459 254 63.6 95 242 39.8 315 31.1 31.6
FDA 82.7 39.4 57.0 147 7.6 26.1 37.8 30.5 532 14.0 153 48.0 28.8 62.6 26.6 47.5 51.5 27.0 350 37.1
SIM 87.0 484 421 63 83 158 84 17.6 21.7 228 0.1 393 22.1 603 87 182 423 30.1 329 28.0
MRNet 83.6 363 65.6 8.1 82 21.5 30.0 23.7 394 242 0.0 44.1 260 649 08 3.6 7.6 103 31.8 279
Oracle 90.5 63.7 78.0 30.0 29.6 329 37.0 41.2 619 252 753 479 234 69.5 27 154 603 39.7 379 454

Table 15. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes—ACDC adaptation for rain.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.
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Source model 71.2 26.7 73.8 20.8 27.1 29.9 393 444 873 252 82.0 42.0 143 762 363 26.6 49.8 30.3 422 445

AdaptSegNet 81.2 43.2 83.3 273 314 23.0 41.4 405 87.2 350 93.1 402 155 739 457 349 57.0 27.1 49.1 49.0
ADVENT  77.0 31.0 52.5 35.0 342 234 42.1 41.0 853 342 26.7 413 14.1 75.6 473 404 643 29.6 46.2 443

BDL 79.1 39.0 82.8 30.0 34.5 28.1 40.1 47.3 87.0 28.7 91.8 40.6 17.8 74.6 46.3 36.7 604 332 463 49.7
CLAN 77.5 40.0 46.8 249 30.3 28.1 37.7 483 83.8 37.0 6.6 457 174 79.7 4377 429 63.7 35.0 46.1 44.0
FDA 76.6 45.0 829 37.0 35.6 34.8 49.8 52.0 88.7 37.8 88.8 43.6 174 76.8 46.5 53.6 64.8 34.5 455 533
SIM 76.6 29.6 85.7 204 28.7 213 374 342 87.3 34.8 94.0 294 16.6 73.2 46.1 223 46.2 21.8 39.3 445
MRNet 70.5 99 465 35.6 36.1 36.5 564 562 90.2 413 43 53.0 235 81.6 393 26.7 57.8 43.6 545 454
Oracle 87.3 63.9 89.0 50.3 40.6 38.4 52.2 53.4 89.2 422 96.7 51.5 13.0 819 479 47.2 72.2 29.1 488 57.6
jointly on all conditions of ACDC and also evaluated jointly IoU results and are thus already included in Table 5 of the

on all conditions, while Tables 27-30 present methods paper and Tables 22-25.
trained and evaluated on individual conditions. The results
corresponding to the baseline that uses constant confidence
equal to 1 are omitted, as they are identical by definition to



Table 16. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes—ACDC adaptation for snow.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.
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Source model 68.5 26.6 52.7 18.8 269 22.2 357 40.7 765 3.6 499 504 27.1 73.7 27.6 39.1 609 21.1 425 402

AdaptSegNet 51.3 32.5 473 21.5 31.5 132 37.8 232 76.0 2.6 45 499 23.1 68.7 383 31.8 51.5 21.7 45.0 353
ADVENT  50.8 24.8 46.2 15.5 26.0 155 279 23.0 70.0 2.1 9.5 442 253 685 229 249 50.1 239 389 321

BDL 423 364 60.2 157 30.4 15.1 41.4 304 713 1.7 112 46.8 27.8 57.7 38.6 34.1 59.2 28.1 43.7 36.4
CLAN 71.8 26.0 37.3 125 27.0 21.1 32.0 41.1 785 19 09 509 239 824 432 39.5 61.6 252 394 377
FDA 74.6 309 56.1 20.5 34.8 28.7 539 47.8 80.5 1.1 559 53.1 379 79.7 40.5 519 67.4 343 41.8 469
SIM 72.1 26.7 394 133 295 153 264 179 764 48 5.1 459 320 762 29.8 26.6 48.3 232 242 333
MRNet 67.7 35 36.8 83 248 18.0 52.6 554 824 05 0.1 622 302 79.2 32.1 593 584 29.1 358 38.7
Oracle 89.1 61.7 82.7 26.4 40.9 355 56.5 54.1 852 39.0 95.1 55.0 25.7 84.3 38.6 53.8 77.6 29.0 49.5 56.8

Table 17. Comparison of externally pre-trained models on the complete test set of ACDC including all conditions. The three groups of
rows present models pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF:
Foggy Cityscapes-DBF, FZ: Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 66.3 289 67.6 19.2 259 36.7 50.0 47.5 69.4 28.8 83.0 42.1 17.7 72.6 309 31.6 489 26.1 36.7 43.7
DeepLabv2 CS 719 262 51.1 18.8 225 19.7 33.0 27.7 679 28.6 442 43.1 22.1 71.2 29.8 333 484 262 358 38.0
DeepLabv3+ CS 75.1 328 659 17.5 202 322 46.7 452 70.5 33.5 809 239 14.7 71.5 40.1 203 51.2 202 28.8 41.6
DANet CS 580 6.0 573 6.8 223 27.7 413 421 66.4 199 69.2 322 102 46.5 224 19.1 43.1 132 255 33.1
HRNet CS 55.6 109 554 7.7 159 21.7 37.8 425 67.4 133 59.0 38.7 14.0 68.3 23.8 48.0 483 179 23.6 353
SFSU FC 729 288 683 19.6 239 373 493 470 60.4 334 723 43.1 148 727 31.7 31.2 47.0 254 355 429
CMAda FC-DBF+FZ 79.9 325 69.5 14.7 247 41.1 53.6 513 674 34.8 83.8 49.0 199 77.0 34.1 385 51.1 29.6 427 47.1
DMAda ND 753 355 674 192 27.1 40.0 53.7 509 74.6 309 849 488 23.1 76.6 39.7 37.4 525 29.1 42.1 479
GCMA CS+DZ 79.7 487 T71.5 21.6 29.9 425 56.7 57.7 758 395 872 57.4 29.7 80.6 449 46.2 62.0 372 465 534
MGCDA  CS+DZ 76.0 49.4 72.0 11.3 21.7 39.5 52.0 549 73.7 247 88.6 54.1 272 782 309 419 582 31.1 444 489

Table 18. Comparison of externally pre-trained models on ACDC for fog. The three groups of rows present models pre-trained on
normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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Method Trained on § .;; E g f_{ =3 Eo 2] go g = é <} § é 2 E é g mloU
RefineNet CS 644 40.0 69.6 242 19.7 36.5 52.7 552 71.1 354 939 274 192 727 420 42.1 69.3 303 158 464

DeepLabv2 CS 66.4 312 268 229 186 82 323 10.7 70.7 39.0 31.3 17.6 41.1 65.0 30.0 343 183 423 29.0 335

DeepLabv3+ CS 823 57.6 615 18.1 164 333 49.6 545 76.0 44.1 90.0 9.6 28.7 69.0 35.1 345 289 41.7 375 457

DANet CS 52.1 145 49.7 55 169 30.0 479 51.5 722 233 80.1 242 3.0 447 324 275 65.1 108 7.7 347

HRNet CS 573 193 49.1 12.8 17.8 273 44.0 547 72.8 155 81.7 283 39 66.6 284 52.0 72.7 7.2 181 384

SFSU FC 723 379 744 289 193 375 494 546 58.0 43.7 779 286 53 73.6 424 44.0 72.7 314 149 456

CMAda FC-DBF+FZ 81.7 435 72.8 25.6 19.5 39.8 51.0 589 80.5 51.3 953 369 12.7 76,5 452 512 77.1 332 199 512

DMAda ND 755 447 72.6 264 20.8 383 529 57.8 759 38.6 96.3 355 26.8 75.8 47.7 50.7 73.9 358 173 50.7

GCMA CS+DZ 80.8 53.5 70.1 29.2 20.7 384 53.0 609 70.2 46.5 954 442 38.0 76.6 52.4 49.7 56.8 41.0 17.6 52.4

MGCDA CS+DZ 71.7 473 657 18.2 153 344 48.6 599 649 247 954 448 23.8 733 36.1 454 639 239 154 459

D. Additional Details on ACDC Dataset the submission page of the website is provided in Fig. 6.

: . . . D.1. Collection
We provide additional details on the construction and the

characteristics of ACDC. We have implemented a website Our recordings were performed in Switzerland. There-
and evaluation server for the ACDC benchmark and have fore, the geographic distribution of ACDC is similar to

made it publicly available. An indicative screenshot from Cityscapes, which was also recorded in central Europe.



Table 19. Comparison of externally pre-trained models on ACDC for nighttime. The three groups of rows present models pre-trained
on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 66.5 24.0 503 169 11.6 264 342 255 442 21.6 0.1 408 248 574 6.8 373 205 239 19.1 29.0
DeepLabv2 CS 770 229 563 135 92 23.8 229 256 414 161 29 44.1 175 64.1 11.9 345 424 226 22.7 30.1
DeepLabv3+ CS 73.0 20.8 504 222 54 22.6 31.8 23.0 429 161 6.6 192 11.7 489 09 139 424 105 13.7 25.0
DANet Cs 67.1 45 467 55 51 13.1 293 19.6 36.6 156 0.1 293 124 29.1 45 123 9.0 103 133 19.1
HRNet Cs 50.0 10.1 59.9 0.7 6.0 142 256 223 19.1 34 0.1 376 79 494 69 459 139 78 113 206
SFSU FC 769 262 504 18.1 9.6 274 333 253 41.0 215 0.0 415 253 587 7.3 407 179 220 179 29.5
CMAda FC-DBF+FZ 82.6 254 539 10.1 112 30.5 36.7 30.0 387 165 0.1 46.0 262 658 139 509 204 248 238 320
DMAda ND 747 295 494 17.1 12.6 31.0 382 30.0 48.0 228 02 47.0 254 63.8 12.8 46.1 23.1 247 24.6 32.7
GCMA CS+DZ 78.6 459 585 17.7 18.6 37.5 43.6 435 58.7 392 224 579 299 72.1 21.5 562 41.8 357 354 429
MGCDA  CS+DZ 745 525 694 7.7 10.8 384 402 433 61.5 363 37.6 553 256 712 109 464 32.6 273 338 408
DANNet CS+DZ 90.7 61.1 755 359 28.8 26.6 314 30.6 70.8 394 787 499 288 659 24.7 44.1 61.1 259 345 476

Table 20. Comparison of externally pre-trained models on ACDC for rain. The three groups of rows present models pre-trained on
normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ: Foggy

Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 739 299 829 263 372 463 61.8 579 89.4 425 96.6 442 132 80.5 40.7 229 66.8 32.0 535 52.6
DeepLabv2 CS 712 267 73.8 20.8 27.1 299 393 444 873 252 82.0 42.0 143 76.2 363 26.6 498 303 422 445
DeepLabv3+ CS 744 29.8 823 18.1 28.8 41.7 543 55.6 88.7 32.8 97.2 36.7 85 847 51.7 340 61.5 29.7 40.0 50.0
DANet CS 599 24 759 129 315 37.7 495 533 855 355 91.1 354 84 535 260 164 578 179 389 415
HRNet CS 650 6.7 703 16.1 202 29.5 485 54.7 87.5 36.1 80.1 40.6 8.6 782 34.1 446 673 29.4 346 448
SFSU FC 746 299 814 24.1 338 462 599 56.7 86.8 40.8 934 46.4 15.1 80.5 40.5 18.6 65.7 33.6 525 51.6
CMAda FC-DBF+FZ 78.1 34.8 80.7 189 333 50.0 63.1 622 87.4 38.8 96.6 51.1 169 833 379 219 68.7 36.5 55.1 534
DMAda ND 783 37.7 825 242 36.8 49.0 645 61.5 90.6 42.8 973 49.6 182 834 451 21.6 702 352 548 549
GCMA CS+DZ 81.1 48.0 84.8 25.0 373 498 66.5 662 92.1 435 97.6 545 204 855 473 346 71.3 403 56.7 58.0
MGCDA  CS+DZ 80.5 46.5 799 16.0 288 449 60.0 61.5 90.3 44.8 97.1 51.1 23.1 823 334 302 69.1 365 53.8 542

Table 21. Comparison of externally pre-trained models on ACDC for snow. The three groups of rows present models pre-trained on
normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ: Foggy
Zurich, ND: Nighttime Driving, DZ: Dark Zurich.

Method ~ Trained T £ 2 3 8 2z 5 8% § 25 &5 = % z 85 £ % IoU
etho Tained on e E B g § a ED o éb 5 ~ é -g 8 g 2 g g g mlo
RefineNet CS 61.0 255 73.7 11.7 31.1 37.2 53.1 57.7 713 09 92.7 44.1 147 77.0 303 269 57.2 184 385 433
DeepLabv2 CS 68.5 26.6 52.7 18.8 269 222 357 40.7 76.5 3.6 499 504 27.1 73.7 27.6 39.1 609 21.1 425 40.2
DeepLabv3+ CS 739 326 71.3 11.1 256 314 50.6 544 77.8 4.1 87.0 25.1 14.6 82.7 39.5 17.2 552 12.0 31.2 420
DANet CS 476 54 575 29 29.1 293 414 512 71.1 05 64.8 327 11.7 56.5 145 279 537 81 259 333
HRNet CS 59.6 93 439 40 17.8 17.6 356 47.0 77.0 0.0 32.5 394 39.2 742 134 54.0 61.1 159 26.1 35.1
SFSU FC 64.5 240 72.6 109 28.8 37.8 549 58.1 624 08 784 442 9.5 76.0 295 256 552 16.7 373 414
CMAda FC-DBF+FZ 74.6 31.6 73.6 94 303 43.1 619 61.7 757 0.7 93.5 53.1 19.1 79.6 29.7 31.6 619 229 503 47.6
DMAda ND 73.6 344 749 123 334 41.1 584 60.1 79.9 0.6 954 53.1 23.0 80.4 40.3 345 629 22.7 48.6 489
GCMA CS+DZ 79.7 49.5 753 17.5 379 432 59.0 619 78.8 2.2 955 625 33.6 832 425 434 72.1 322 51.1 53.7
MGCDA CS+DZ 80.1 49.5 702 6.1 27.8 39.6 554 58.0 76.0 0.3 955 57.5 357 81.0 28.6 48.9 70.3 27.8 50.5 50.5

This eliminates geographic location from the set of fac-
tors that introduce a domain shift between Cityscapes and
ACDC and allows to study in isolation the effect of visual
conditions at time of capture on the performance of seman-
tic segmentation methods, both in the supervised setting and
the unsupervised domain adaptation setting.

D.2. Correspondence Establishment

We present in Algorithm 1 the dynamic programming

algorithm that we use for matching the GPS sequences of
adverse-condition recordings and normal-condition record-
ings of ACDC. The algorithm takes into account the sequen-



Table 22. Comparison of state-of-the-art supervised methods on ACDC for fog. The first group of rows presents condition-specific

expert models trained only on fog, while the second group presents uber models trained on all conditions.

Method

road
sidew.
build
wall
fence
pole
light
sign
veget
terrain
sky
person
rider
car
truck
bus
train
motorc
bicycle

mloU

RefineNet 932 755 86.1 44.1 37.6 460 642 648 855 70.8 979 46.1 348 793 594 648 824 36.6 388
DeepLabv2 89.9 656 812 39.1 259 28.1 459 477 83.0 674 967 352 384 735 46.1 298 379 284 316
DeepLabv3+ 93.8 77.4 888 51.0 433 542 682 71.7 877 746 982 535 32.1 838 693 844 853 472 40.1
HRNet 946 79.6 899 53.6 449 594 743 76.1 889 776 983 615 533 86.0 66.6 80.0 885 41.1 302

63.6
522
68.7
70.8

RefineNet 935 756 872 423 392 498 685 672 856 70.1 979 526 482 810 626 620 69.1 57.7 374
DeepLabv2 909 67.2 81.6 387 29.5 29.7 512 50.7 814 619 960 348 405 741 534 531 599 83 325
DeepLabv3+ 93.6 77.6 892 54.0 448 558 67.6 720 88.0 735 982 495 244 839 722 842 892 528 424
HRNet 949 81.0 905 589 537 619 790 787 893 787 983 632 546 872 723 878 90.6 58.7 389

65.7
54.5
69.1
74.7

Table 23. Comparison of state-of-the-art supervised methods on ACDC for nighttime. The first group of rows presents condition-

specific expert models trained only on nighttime, while the second group presents uber models trained on all conditions.
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Method s = E] 5 < &0 g s & 2 s 5 S S 3 38 2 IoU
wd 3 2 3 F 5 23 8 FOEFoz f5 E 2P g oG o
RefineNet 934 703 78.6 343 341 469 522 542 663 187 781 603 355 762 47 478 594 360 453 522
DeepLabv2 90.5 63.7 78.0 30.0 29.6 329 37.0 412 619 252 753 479 234 695 27 154 603 39.7 379 454
DeepLabv3+ 94.7 759 850 484 38.6 522 558 544 76.1 303 842 674 41.1 850 83 623 80.6 356 498 59.2
HRNet 955 78.8 86.5 492 44.1 58.0 645 632 756 41.0 839 71.7 488 84.6 155 769 812 259 559 632
RefineNet 935 709 80.3 32.0 320 460 539 541 692 319 780 61.0 354 802 11.6 60.0 694 489 46.8 555
DeepLabv2 86.6 57.8 71.7 303 23.6 31.8 374 389 60.0 268 728 476 251 71.1 169 27.8 65.1 30.6 385 453
DeepLabv3+ 94.7 753 849 469 37.8 538 573 521 757 412 829 666 40.2 836 247 679 808 41.7 494 60.9
HRNet 957 79.0 86.2 468 435 592 649 645 753 403 827 721 526 869 188 788 83.6 525 573 653

Table 24. Comparison of state-of-the-art supervised methods on ACDC for rain. The first group of rows presents condition-specific

expert models trained only on rain, while the second group presents uber models trained on all conditions.

Method

road
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fence
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light
sign
veget
terrain
sky
person
rider
truck
bus
train
motorc.
bicycle

mloU

RefineNet  89.2 69.8 91.7 522 513 579 710 699 93.6 505 984 658 251 88.1 494 554 748 47.0 602
DeepLabv2 87.3 639 89.0 503 40.6 384 522 534 892 422 967 515 13.0 819 479 472 722 29.1 488
DeepLabv3+ 92.8 774 939 673 581 64.1 744 759 942 508 98.6 708 334 904 677 792 86.8 546 66.1
HRNet 94.8 81.8 949 69.6 63.7 695 79.6 80.7 948 512 987 735 27.0 931 754 409 614 59.6 708

66.4
57.6
73.5
72.7

RefineNet  91.5 735 91.1 51.0 51.6 583 725 737 929 512 979 655 295 892 598 682 803 48.0 595
DeepLabv2 874 64.8 88.1 482 404 384 520 569 893 402 965 523 174 839 555 63.0 758 289 472
DeepLabv3+ 92.7 765 935 648 58.0 638 758 773 941 500 98.0 705 33.1 912 759 851 862 558 650
HRNet 95.6 831 942 60.1 663 712 823 824 946 551 986 752 39.7 934 738 862 859 664 713

68.7
59.3
74.1
71.7

Table 25. Comparison of state-of-the-art supervised methods on ACDC for snow. The first group of rows presents condition-specific

expert models trained only on snow, while the second group presents uber models trained on all conditions.

T § 3 = 8 =2 =2 g F § - 5§ 58 5 % £ = £ 3
Method § .&; ; g é =3 ) 2 §) 5 < é 2 s 2 2 g é g mloU
RefineNet  90.1 65.7 864 312 48.1 580 76.7 703 89.7 457 973 708 154 87.1 350 43.1 79.1 387 599 625
DeepLabv2 89.1 61.7 827 264 409 355 565 54.1 852 39.0 951 550 257 843 386 538 77.6 29.0 495 568
DeepLabv3+ 919 709 90.1 489 520 622 792 745 920 470 97.6 782 359 904 61.7 643 892 439 694 705
HRNet 93.6 752 89.0 420 556 67.7 833 789 93.0 489 978 78.1 164 92.6 548 61.6 87.0 50.0 689 70.2
RefineNet  90.2 65.7 865 33.7 50.6 578 78.0 715 89.2 445 97.0 738 46.0 884 500 480 799 406 603 659
DeepLabv2 88.7 62.5 825 353 41.7 350 59.0 528 844 360 952 581 29.8 848 489 309 779 329 484 57.1
DeepLabv3+ 91.4 69.6 88.8 48.8 539 60.6 79.5 729 90.5 447 974 774 372 900 643 550 878 417 700 69.6
HRNet 944 773 915 531 63.6 702 851 814 921 577 977 833 69.6 93.6 718 545 863 527 731 763
tial nature of the GPS measurements from the two record- a given sample ¢ of the adverse-condition sequence P, its
ings in computing the correspondence function A. In par- matched sample A(7) of the normal-condition sequence R

ticular, we enforce k < i = A(k) < A(:). That is, for is restricted to not precede in time any sample of R that has



Table 26. Uncertainty-aware semantic segmentation baseline results on the complete test set of ACDC including all conditions.
Supervised methods for standard semantic segmentation are trained and evaluated jointly on all conditions for semantic label prediction.
Confidence prediction baselines: max-softmax network outputs (Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet Max-Softmax 91.3 67.6 84.4 343 42.1 499 64.7 64.2 858 54.6 953 59.6 34.4 84.6 519 60.6 70.6 43.3 489 625
RefineNet GT 92.9 73.1 89.1 43.1 50.7 57.0 729 70.7 90.1 63.4 97.7 67.6 43.1 87.3 573 614 77.1 54.1 58.3 68.8
DeepLabv2 Max-Softmax 87.1 60.4 79.7 36.1 35.7 32.6 47.3 48.7 80.2 49.2 922 49.0 24.7 79.0 51.1 43.3 723 26.3 45.1 54.7
DeepLabv2 GT 88.5 64.4 842 409 41.8 37.8 54.0 542 86.4 549 96.0 53.6 30.3 81.8 52.5 42.7 73.6 33.3 47.6 589
DeepLabv3+ Max-Softmax 92.1 71.3 88.2 49.0 47.3 549 68.7 65.6 88.0 60.7 96.0 65.0 339 87.5 66.7 72.6 81.3 43.8 550 67.8
DeepLabv3+ GT 93.8 76.5 914 56.6 554 623 75.0 723 91.8 66.5 98.0 72.0 41.0 89.5 71.1 74.0 86.5 554 63.7 73.3

Table 27. Uncertainty-aware semantic segmentation baseline results on ACDC for fog. Supervised methods for standard semantic
segmentation are trained and evaluated on fog for semantic label prediction. Confidence prediction baselines: max-softmax network
outputs (Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet ~Max-Softmax 92.6 71.9 829 40.7 35.8 42.7 62.1 62.6 84.1 64.1 97.5 450 26.8 77.1 57.8 59.9 79.8 352 334 60.6

RefineNet  GT 934 76.5 87.6 48.7 455 494 682 689 873 73.0 98.1 55.6 40.3 809 61.3 654 83.7 53.6 51.7 679
DeepLabv2 Max-Softmax 89.7 63.0 79.2 39.4 259 25.0 41.4 46.6 82.5 66.7 956 36.4 35.6 72.7 49.5 29.6 445 292 333 519
DeepLabv2 GT 90.2 66.7 82.8 44.2 353 31.5 495 522 84.8 69.4 969 442 445 76.0 48.3 30.1 39.0 48.0 42.7 56.7
DeepLabv3+ Max-Softmax 92.9 74.8 87.2 51.3 41.7 499 65.6 69.8 87.1 723 97.6 51.9 27.1 82.8 67.4 79.1 84.1 42.6 364 664
DeepLabv3+ GT 939 783 90.0 55.5 52.0 57.9 72.3 759 89.2 76.6 98.4 63.2 38.5 85.0 71.7 85.1 86.7 66.0 533  73.1

Table 28. Uncertainty-aware semantic segmentation baseline results on ACDC for nighttime. Supervised methods for standard se-
mantic segmentation are trained and evaluated on nighttime for semantic label prediction. Confidence prediction baselines: max-softmax
network outputs (Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet Max-Softmax 92.3 66.4 78.6 31.8 37.2 46.2 483 53.3 73.5 169 83.6 549 34.6 774 8.5 43.1 536 352 416 514
RefineNet GT 93.6 72.4 88.2 42.0 53.0 555 61.6 61.7 89.0 31.3 97.1 63.3 419 80.0 18.2 50.3 60.8 49.5 519 61.1
DeepLabv2 Max-Softmax 90.2 62.2 78.6 29.9 329 33.7 36.5 40.3 65.6 252 779 452 232 70.2 5.0 14.6 62.1 40.3 38.8 459
DeepLabv2 GT 90.8 65.8 87.2 37.8 453 433 48.1 49.6 87.8 37.5 97.0 51.1 29.8 743 173 17.3 63.0 51.8 43.8 54.7
DeepLabv3+ Max-Softmax 93.8 73.3 85.2 47.0 43.4 51.3 53.7 543 80.7 28.7 879 62.1 409 84.8 104 65.2 78.8 34.7 472  59.1
DeepLabv3+ GT 949 775 91.5 547 534 602 64.8 62.5 92.7 41.3 98.5 70.2 49.3 88.3 224 655 82.4 50.5 550 67.1

Table 29. Uncertainty-aware semantic segmentation baseline results on ACDC for rain. Supervised methods for standard semantic
segmentation are trained and evaluated on rain for semantic label prediction. Confidence prediction baselines: max-softmax network
outputs (Max-Softmax) and ground-truth invalid masks (GT).

)
Method Confidence §

sidew.
build
wall
fence
pole
light
sign
veget
terrain
sky
rider
car
truck
bus
train
motorc

[5)
$ mAUloU
2

person

RefineNet Max-Softmax 86.0 67.8 89.9 44.9 457 532 65.1 673 92.1 484 97.8 58.6 23.6 86.6 44.1 53.1 65.6 403 56.6 62.5

RefineNet GT 89.5 70.8 92.1 54.1 53.2 599 72.6 723 939 52.1 98.4 674 26.6 88.7 52.4 564 755 514 629 679
DeepLabv2 Max-Softmax 85.9 62.3 87.2 483 389 35.8 48.6 51.5 87.3 41.8 959 472 135 80.8 46.2 50.2 69.3 239 50.0 56.0
DeepLabv2 GT 87.8 65.1 89.4 52.1 42.5 40.2 53.7 56.1 89.6 43.6 96.8 534 13.8 82.7 50.2 48.1 729 333 514 59.1
DeepLabv3+ Max-Softmax 91.2 75.3 92.8 62.2 53.7 60.0 71.3 72.2 93.2 50.0 98.0 65.4 30.8 90.0 63.5 77.0 83.1 48.0 63.9 70.6
DeepLabv3+ GT 93.2 78.4 94.2 68.8 60.0 66.0 75.8 78.2 94.5 52.5 98.6 724 35.0 91.0 70.4 804 87.4 58.8 69.0 75.0
been matched to a sample k of P that precedes i. This con- driving directions and 3D rotations of the camera.

straint is based on the fact that the routes of the two record-

ings are driven in the same direction and thus in the same D.3. Annotation

order. Consequently, for routes that contain loops, our for-
mulation prevents the matching of samples that are nearest
neighbors but correspond to different passes from the same
location and are thus potentially associated with different

In Fig. 5, we show the percentage of the pixels of each
semantic class in ACDC that are marked as invalid in the
ground-truth invalid mask J. For the majority of the classes,
a notable percentage of more than 5% of the pixels are la-



Table 30. Uncertainty-aware semantic segmentation baseline results on ACDC for snow. Supervised methods for standard semantic
segmentation are trained and evaluated on snow for semantic label prediction. Confidence prediction baselines: max-softmax network

outputs (Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet ~Max-Softmax 89.1 59.9 83.8 25.8 43.8 53.1 72.6 69.2 88.6 43.5 96.8 659 11.7 85.8 39.5 484 74.1 369 488 599
RefineNet GT 91.3 69.1 86.8 324 499 59.0 78.2 72.8 90.0 52.5 97.3 71.8 16.1 87.6 37.6 44.7 79.5 39.8 60.1 64.0
DeepLabv2 Max-Softmax 89.1 61.7 82.7 26.4 40.9 35.5 56.5 54.1 852 39.0 95.1 55.0 25.7 84.3 38.6 53.8 77.6 29.0 49.5 56.8
DeepLabv2 GT 90.3 65.1 83.1 27.6 42.7 36.5 579 56.7 855 46.3 95.1 564 264 85.0 41.1 55.0 78.2 30.2 49.8 584
DeepLabv3+ Max-Softmax 90.6 67.0 88.8 45.1 489 57.8 76.6 72.9 90.8 45.7 97.0 74.8 28.4 89.2 63.3 67.8 87.8 36.7 61.1 67.9
DeepLabv3+ GT 929 740 90.4 50.3 539 634 80.5 77.4 922 53.6 97.6 79.2 36.6 90.9 644 659 90.0 452 69.8 72.0
Algorithm 1 Dynamic programming algorithm for GPS sequence matching
Input: Adverse-condition GPS sequence P = (py, ..., Pn), normal-condition GPS sequence R = (r1, ...,Iy,)
Output: Correspondence function A : {1, ..., n} — {1, ..., m}
1: > Compute pairwise Euclidean distances of GPS samples
2 dij+ |lpi—1jll, 1<i<n,1<j<m
3: > Compute cost matrix C (n x m)
4: Olj <—d1],1<j<m
5. Cyj emm{Cz 1kt +dij,2<i<n, 1<j<m
6: > Compute backtracking indices matrix o
7: o¢1j<—argmm{C’Z 1652<i<n, 1<j<m
8: I>Backtrack1ng
9: A(n) < argmin{C,,; }
J
10: A(Z) — ai+1,A(i+l)a 1 < ) <n-— 1
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Figure 5. Per-class percentages of labeled pixels that are marked as invalid in ACDC.

beled as invalid, which demonstrates the ability of our spe-
cialized annotation protocol with privileged information to
assign a legitimate semantic label even to invalid regions
with ambiguous semantic content.

The total number of annotated pixels in ACDC is pre-
sented in Table 31. Note that labeled pixels that are marked
as valid in the ground-truth invalid masks J constitute ca.
85% of the total pixels. From the remaining 15% of pixels
that did not receive a legitimate semantic label in stage 1
of the annotation because of their ambiguity, it was possi-
ble to label half of them (7.5%) with a legitimate seman-
tic label in stage 2 of the annotation, by making use of the
additional privileged information in the form of correspond-
ing normal-condition images and original adverse-condition
videos. Note that for stage 2 of the annotation, we explicitly

Table 31. Overall annotation statistics for ACDC. We report the
total number of pixels assigned to a legitimate semantic label (La-
beled) and of pixels not assigned to any semantic label (Unlabeled)
as well as the respective percentages.

Number of pixels Percentage of pixels (%)

Labeled 7.682 x 10° 92.47
-out of which Valid  7.055 x 10° 84.93
-out of which Invalid  0.627 x 10° 7.54
Unlabeled 0.625 x 10° 7.53
Total 8.307 x 10° 100.00

set the time budget (excluding quality control) to 20 minutes
and asked the annotators to prioritize labeling of (i) traffic
participants and (ii) distant and/or unclear objects that were
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+ Single zip archive
+ Semantic Segmentation:
o Sizelimit: 100 MB
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- labelTrainIds/

o Result files with filename “GOPRO364.frame_000021* png". The files can be in arbitrary locations inside ‘labelTrainlds/".
o Exactly one result file per test image.
o Image dimensions of result files must be equal to input RGB image dimensions, i.e,, 1920 x 1080.
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- confidence/
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o Image dimensions of result files must be equal to input RGB image dimensions, i.e, 1920 x 1080

o Labels must be encoded in trainiDs format, e.g, road should correspond to ID 0.

o Confidence maps must be 8-bit grayscale images, where a value of 0 corresponds to confidence 0.0 and a value of 255 corresponds to confidence
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Figure 6. The submission page of our benchmark website. Our
evaluation server supports the two tasks and five condition con-
figurations of ACDC, accepting submissions both for individual
conditions and for all conditions. Best viewed on a screen.

affected the most by the adverse conditions at the time of

capture.



