
Image Analysis and Computer Vision HS 18

Exercise 2: Stereo Vision Due: 15.11.2018

In the preceding exercises, several image processing methods have been introduced. The two pro-

cessed images (showing a cube from different points of view) shall now be used in order to reconstruct

a 3d wire frame version of that cube. In the theoretical part, the position of the right camera has

to be derived. The practical part is about looking for correspondences between the two images and

about triangulation.

1 Theoretical Exercises

For stereo reconstruction, both the internal and external parameters of each camera must be known.

The internal parameters are given: The focal length is 35 mm (1.378 in). The width of the film back

equals to 1.417 in and its height is 0.945 in. The external parameters are provided only partly. The

missing information has to be derived.

1.1 External Camera Parameters

The camera setup is shown in Fig. 1(a). Determine the position C ′ of the right camera. In the general

case, this task requires the coordinates of three points in space and the image coordinates of these

points with respect to the right camera. However, since there is no rotation involved two points are

sufficient. In the world coordinate system, point P1 is located at (−0.023,−0.261, 2.376) and point

P2 at (0.659,−0.071, 2.082). In the image of the right camera (640x480), P1 has coordinates (52, 163)

and P2 is positioned at (218, 216) - see Fig. 1(b).

x

y

x’

y’

Z

Y

X

f

f

b

C

C’

(a) (b)

Figure 1: (a) The world coordinate system is defined to be the same as the coordinate system of the

left camera (C lies in the origin). Both cameras look in the direction of the positive Z-axis. Neither

is rotated. (b) The cube observed by the right camera C ′.

As a starting point, look at the relevant equation in the script. You can obtain kx and ky by using

the image resolution and the size of the film back. Do not forget that the center of each image at this

scale is at (320, 240). Round the calculated camera position with a precision of half an inch. You can

not assume that C ′ is 0 along the Y and Z directions

stereo.tex

Image Analysis and Computer Vision HS 18

2 Practical Exercises

The goal of the practical exercise is to compute a 3d reconstruction for a given image pair. In this

exercise we will be dealing with 2 examples, ie the tsukuba left.pgm, tsukuba right.pgm image pair, and

the cube left.pgm, cube right.pgm from the previous exercises. Copy the respective image files from

~cvcourse/pics/ or http://people.ee.ethz.ch/~cvcourse/pics/ to a new directory. Also place

the template 2 stereo template.py in this directory.

3d reconstruction from two views can be split into two sub task: (1) finding corresponding points

in the two images and (2) recovering the 3d world coordinates (of the “physical” point) given such

corresponding points. The latter is called triangulation and requires fully calibrated cameras, ie, the

internal and external camera parameters must be known. Calibration of cameras has been addressed

in the theoretical exercise (see Fig. 1(a)). Assume now that the two optical camera centers are 1.0

inch apart from each other. The optical axes of the cameras are parallel and their image planes are

coplanar, with coincident x-axes.

Given our special camera setup, we know that corresponding points must have the same y coordi-

nate which simplifies finding point correspondences. Hence, we can process each line of the image (ie,

each scan line) separately. In order to identify corresponding points we need a measure of similarity.

In this exercise you should use the normalised cross-correlation which will be defined later.

2.1 Triangulation

Implement the function def triangulate(_xLeft, _xRight, _y, m_width, m_height). The first

two parameters correspond to the x-coordinate of a projected 3d-points array in the left and the

right gray scale image. y is the common y-coordinates array. m_width and m_height are the width

and height of the image. Note that this method uses the (globally defined) camera parameters. The

function must return the world coordinates in inch.

Check the code with the test case provided in the jupyter notebook.

2.2 Correlation Coefficient

Implement def computeCorrelation(grayLeft, grayRight, xLeft, xRight, y,

maskWidth, maskHeight). The method is supposed to compute the similarity between a patch from

the left and and a patch from the right image during correspondence search. Check the code with the

test case provided in the jupyter notebook.

The normalised cross-correlation of patches surrounding two points (in the two views), is defined

as

NCC(pL, pR) =
1

|∆|σLσR

∑
∆

(I(pL + ∆)− µL) · (I(pR + ∆)− µR), (1)

where ∆ defines the (square) neighbourhood of a pixel, µR = 1
|∆|

∑
∆ I(pR + ∆) and σR =√

1
|∆|

∑
∆(I(pR + ∆)− µR)2.

2.3 Stereo Reconstruction

The final step is to implement the function def definePointsThreeD(grayLeft, grayRight,

cannyLeft, cannyRight) which does the actual 3d reconstruction. It makes use of the above

function to identify corresponding points and to compute the 3d world coordinates. The output, ie

one 3d point for each pair of corresponding points, should be stored in an array called points. Task:

In each scan line, find one corresponding pixel in the right image for each pixel in the left image (note

that the x-coordinate of the pixel in the right image always has to be smaller than the x-coordinate

of the pixel in the left image - explain why). Use the correlation coefficient as a similarity measure

for the correspondence search. Compute a 3d-point by triangulation for every pixel pair and add it to

the points.

stereo.tex

http://people.ee.ethz.ch/~cvcourse/pics/

Image Analysis and Computer Vision HS 18

Test your code with the tsukuba image pairs. Your results should look like Fig. 2 for a correlation

mask of 11× 11.

(a)

Figure 2: 3d reconstruction of tsukuba.

2.4 Cubes

As you may have noticed, computing point correspondences is quite time consuming. The reason is

that one has to compare each point in the left image to many points of the corresponding scan line in the

right image. You could now implement a faster method (for the cube left.pgm, and cube right.pgm

images) which makes use of the canny edge maps (cube left canny.pgm, and cube right canny.pgm

images). Adapt the method definePointsThreeD to take advantage of the canny images. This allows

to limit the correspondence search to only a few pixels per scan line. Do not forget to set m cubeMode

to 1 and provide the canny edge maps.

Can you suggest any modification of this pipeline, that may lead to better results?

stereo.tex

	Theoretical Exercises
	External Camera Parameters

	Practical Exercises
	Triangulation
	Correlation Coefficient
	Stereo Reconstruction
	Cubes

