A brief introduction to PyTorch

IACV 2018
Prerequisites

Notion of multidimensional arrays (tensors)

NumPy basics

Perceptron (Fully-connected layer)

Convolution (Correlation filter)
PyTorch vs TensorFlow (as of 2018)

- Both are powerful tools
- A matter of preference
- **PyTorch** is gaining traction in ML community
- PyTorch is easier for toy and research projects
- Clear “pythonic” API
- **TensorFlow** is great for deploying models in production
- TensorFlow graph definition API may incur engineering debt
- More than one way to do things
PyTorch tensor conventions

Images: 4D tensors with shape \((\text{batch, channels, height, width})\)

Labels: 1D tensors with shape \((\text{batch, })\)

Calling conventions: \texttt{torch.sum(a)} vs \texttt{a.sum()}
torch.nn.Dataset

A base class to wrap any dataset.

Each split (train, test) must be wrapped separately.

Two methods to implement:

- **len**: return length of dataset
- **getitem**: return an item, in our case - a tuple (image, label)

```python
class MyArrayDataset(Dataset):
    def __init__(self, X, y):
        self.X = X
        self.y = y

    def __len__(self):
        return self.X.shape[0]

    def __getitem__(self, index):
        return self.X[index], self.y[index]
```
torch.nn.DataLoader

A wrapper around a class, derived from Dataset class

- Performs synchronous shuffling of the dataset samples
- Assembles samples into minibatches

`loader = DataLoader(dataset, batch_size, shuffle, drop_last)`
- Batch size - how many samples will be returned in one iteration
- Shuffle - whether to randomize samples, or address dataset in order
- Drop last - whether to return incomplete batch upon reaching dataset end
torch.nn.Module

- A parent class to all building blocks:
 - `torch.nn.Linear` - a fully connected layer
 - `torch.nn.Conv2d` - convolutional filter for 2D images
 - `torch.nn.MaxPool2d` - maximum pooling for 2D images (no learnable parameters)
 - `torch.nn.ReLU` - elementwise activation function (no learnable parameters)

- Also a parent class to compositions:
 - `torch.nn.Sequential(block1, block2, ...)` - chain of modules

- Also a parent class to your network:
 - Any building block with trainable parameters (convolution weights, batchnorm statistics) must be defined in class construction: `def __init__(self)`
 - Data flow goes in `def forward(self, *input)`

- `forward` function must compute everything using `torch.*` tensor ops
- `Backward` derivatives are computed automagically (*)
torch.nn.Conv2d

nn.Conv2d: in_channels, out_channels, kernel_size, padding, bias

- in_channels=1, out_channels=1, kernel_size=3, padding=0
- in_channels=3, out_channels=10, kernel_size=5, padding=2

`torch.nn.BatchNorm2d`

`nn.BatchNorm2d`: num_features

- Mutually exclusive with bias in convolution
- Number of features must be same as the number of output features in preceding conv2d

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1...m\}$;
Parameters to be learned: γ, β
Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

\[
\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad // \text{mini-batch mean}
\]
\[
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 \quad // \text{mini-batch variance}
\]
\[
\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \quad // \text{normalize}
\]
\[
y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad // \text{scale and shift}
\]
torch.nn.MaxPool2d

nn.MaxPool2d: kernel_size, stride

max pool with 2x2 window and stride 2
torch.nn.ReLU

nn.ReLU: no parameters

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>20</td>
<td>-10</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-110</td>
<td>25</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-15</td>
<td>25</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>75</td>
<td>18</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>20</td>
<td>0</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>25</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>75</td>
<td>18</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
torch.nn.CrossEntropyLoss

nn.CrossEntropyLoss: no parameters; loss(y_{hat}, y)
- Includes SoftMax activation for convenience
- Argument order matters!

\[
\begin{bmatrix}
1.2 \\
0.9 \\
0.4
\end{bmatrix} \xrightarrow{\text{Softmax}} \begin{bmatrix}
0.46 \\
0.34 \\
0.20
\end{bmatrix}
\]

\[
\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \quad \text{for } j = 1, \ldots, K
\]

\[
D(\hat{y}, y) = -\sum_j y_j \ln \hat{y}_j
\]

\[
CE = -\sum_x p(x) \log q(x)
\]
torch.nn.Optimizer

optim.SGD: weights, lr
CNN Model with one convolutional layer

```python
class CNN(nn.Module):
    def __init__(self, num_out_classes):  
        super(CNN, self).__init__()
        self.op_conv = nn.Conv2d(
            in_channels=3, out_channels=20, \  
            kernel_size=3, padding=1, bias=False)
        self.op_batchnorm = nn.BatchNorm2d(num_features=20)
        self.op_activation = nn.ReLU()

    def forward(self, x):
        x = self.op_conv(x)
        x = self.op_batchnorm(x)
        x = self.op_activation(x)
        return x
```
Typical PyTorch training loop

```python
def train_model(num_epochs, loader_train, cnn, criterion, optimizer):
    for epoch in range(num_epochs):
        for batch in loader_train:
            X_batch, y_batch = batch
            optimizer.zero_grad()  # zero the gradients
            y_hat_batch = cnn(X_batch)  # forward pass
            loss = criterion(y_hat_batch, y_batch)
            loss.backward()  # backward pass
            optimizer.step()  # update parameters
```
Keep in mind

- Create separate cells to print tensors content (also from different cells)
- When in doubt, `print(tensor.shape)`
- Tensor operations can be invoked two ways: `tensor.sum()`
 `torch.sum(tensor)`
- Construct network from building blocks:
 `torch.nn.[Linear, Conv2d, MaxPool2d, ReLU, Linear]`
- Before running jupyter notebook, activate ex3 conda environment:
 `> source activate ex3`