Recap from the last two weeks

- Two weeks ago:
 - How to capture light with the camera
 - Projection matrices from real world to camera
 - Discretization of images
 - Spatial and frequency domain
 - Sampling and quantization
 - LSI systems and Convolution
Recap from the last two weeks

- Last week:
 - Feature extraction
 - Local features
 - Invariance to geometric and photometric changes
 - Points of interest
 - Local regions
 - Descriptive features
 - Combining points of interest, regions and descriptive features: SIFT, SURF,
This week

- Image enhancement
 - Removing noise, improving sharpness, highlighting aspects
 - Simplifying interpretation
 - More pleasing look
 - Normalization for further processing

- Basic feature detection
 - Identifying the points of interest in an image
 - Edges
 - Corners
Image Enhancement
Learning objectives: what can you do after today?

• Reduce noise in images with linear and non-linear filters
• Choose appropriate filters for different noise patterns
• Describe anisotropic diffusion
• Sharpen / Deblur images
• Describe Wiener filter
• Improve image contrast
Three types of image enhancement

1. Noise suppression
2. Image de-blurring
3. Contrast enhancement
Overview

1. Preliminaries
 a. Reminders from previous lecture
 b. Fourier power spectra of images

2. Noise suppression
 a. Convolutional (Linear) filters
 b. Non-linear filters

3. Image de-blurring
 a. Unsharp masking
 b. Inverse Filtering
 c. Wiener Filters

4. Contrast enhancement
 a. Histogram Equalization
Overview

1. Preliminaries
 a. Reminders from previous lecture
 b. Fourier power spectra of images

2. Noise suppression
 a. Convolutional (Linear) filters
 b. Non-linear filters

3. Image de-blurring
 a. Unsharp masking
 b. Inverse Filtering
 c. Wiener Filters

4. Contrast enhancement
 a. Histogram Equalization
Reminders from previous lecture: Fourier Transform

Linear decomposition of functions in the new basis

Scaling factor for basis function \((u,v)\)

\[
\mathcal{F}[f(x, y)] = F(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y)e^{-i2\pi(ux+vy)} \, dx \, dy
\]

→ The Fourier transform

Reconstruction of the original function in the spatial domain: weighted sum of the basis functions

\[
\mathcal{F}^{-1}[F(u, v)] = f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v)e^{i2\pi(ux+vy)} \, dx \, dy
\]

→ The inverse Fourier transform
Computer Vision

\[f(x,y) \]

\[|F(u,v)| \]

\[\text{phase } F(u,v) \]
Reminders from previous lecture: Convolution Theorem

\[C(u, v) = A(u, v)B(u, v) \]
\[c(x, y) = a(x, y) \star b(x, y) \]

Space convolution = frequency multiplication

\[C(u, v) = A(u, v) \star B(u, v) \]
\[c(x, y) = a(x, y)b(x, y) \]

Space multiplication = frequency convolution
Reminders from previous lecture: Modulation Transfer Function

For any Linear Shift Invariant Operator

For any Convolutional Operator

\[o(x, y) = i(x, y) * r(x, y) \]

\[O(u, v) = \mathcal{F}\{o(x, y)\} \]
\[= \mathcal{F}\{i(x, y) * r(x, y)\} \]
\[= I(u, v)R(u, v) \]

\[R(u, v) = \mathcal{F}\{r(x, y)\} \]
\[= \mathcal{F}\{\text{point spread function}\} \]
\[= \text{modulation transfer function (MTF)} \]
Fourier power spectra of images

\[i(x,y) \]

Most of the signal lies in low frequencies!

High frequency contains the edge information!

Images are mostly composed of homogeneous areas

Amount of signal at each frequency pair

Most nearby object pixels have similar intensity

High frequency contains the edge information!
Fourier power spectra of noise

\[n(x,y) \]

\[\phi_{nn} = |N(u,v)|^2 \]

- Pure noise has a uniform power spectra
- Similar components in high and low frequencies.
Fourier power spectra of noisy image

Power spectra is a combination of image and noise

\[f(x,y) \]

\[\phi_{ff} = |F(u,v)|^2 \]
Signal to Noise Ratio

\[\Phi_{ii}(u,v) / \Phi_{nn}(u,v) \]
Only retaining the low frequencies

Low signal/noise ratio at high frequencies \Rightarrow eliminate these

Smother image but we lost details!
High frequencies contain noise but also Edges!

We cannot simply discard the higher frequencies

They are also introduced by edges; example:
Overview

1. Preliminaries
 a. Reminders from previous lecture
 b. Fourier power spectra of images

2. Noise suppression
 a. Convolutional (Linear) filters
 b. Non-linear filters

3. Image de-blurring
 a. Unsharp masking
 b. Inverse Filtering
 c. Wiener Filters

4. Contrast enhancement
 a. Histogram Equalization
Computer Vision

Original Image

Noise Suppression

Noisy Observation
Noise suppression

specific methods for specific types of noise

we only consider 2 general options:

1. Convolutional linear filters
 low-pass convolution filters

2. Non-linear filters
 edge-preserving filters
 a. median
 b. anisotropic diffusion
Low-pass filters: principle

Goal: remove low-signal/noise part of the spectrum

Approach 1: Multiply the Fourier domain by a mask

Such spectrum filters yield “rippling” due to ripples of the spatial filter and convolution
Illustration of rippling
Approach 2: Low-pass convolution filters

generate low-pass filters that do not cause rippling

Idea: Model convolutional filters in the spatial domain to approximate low-pass filtering in the frequency domain

![Convolutional filter](image1)

![Frequency mask](image2)
Averaging

One of the most straightforward convolution filters: averaging filters

\[
o(x, y) = f(x, y) * i(x, y) = f_1(x, y) * (f_2(x, y) * i(x, y))
\]
Example for box averaging

Noise is gone.
Result is blurred!
MTFs for averaging

5 x 5 (separable)

\((1 + 2\cos(2\pi u) + 2\cos(4\pi u))(1 + 2\cos(2\pi v) + 2\cos(4\pi v))\)

not even low-pass!
So far

1. Masking frequency domain with window type low-pass filter yields sinc-type of spatial filter and ripples -> disturbing effect

2. Box filters are not exactly low-pass, ripples in the frequency domain at higher freq.

No ripples in either domain required!
Solution: Binomial filters

iterative convolutions of (1,1)

only odd filters : (1,2,1), (1,4,6,4,1)

2D:

\[
\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{array}
\]

Also separable

MTF : \((2+2\cos(2\pi u))(2+2\cos(2\pi v))\)
Result of binomial filter
Limit of iterative binomial filtering

\[f : \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \]

\[f(x, y) \ast f(x, y) \ast \cdots \ast f(x, y) = f^n(x, y) \]

\[f^n(x, y) \rightarrow a \exp \left(\frac{\| (x, y) \|^2}{b} \right), \text{ as } n \rightarrow \infty \]

Gaussian
Gaussian smoothing

Gaussian is limit case of binomial filters

noise gone, no ripples, but still blurred…

Actually linear filters cannot solve this problem
Some implementation issues

separable filters can be implemented efficiently

large filters through multiplication in the frequency domain

integer mask coefficients increase efficiency
powers of 2 can be generated using shift operations
Can a linear-shift-invariant systems do a perfect job?
Can they separate edge information from noise in the higher frequency components?
Noise suppression

specific methods for specific types of noise

we only consider 2 general options:

- 1. Convolutional linear filters
 - low-pass convolution filters

- 2. Non-linear filters
 - edge-preserving filters
 - fighting blurring!
 - a. median
 - b. anisotropic diffusion
Median filters: principle

non-linear filter

method:

- 1. rank-order neighbourhood intensities
- 2. take middle value

no new grey levels emerge...
Median filters : odd-man-out

advantage of this type of filter is its “odd-man-out” effect

e.g.

1,1,1,7,1,1,1,1,1

↓

?,1,1,1.1,1,1,?,?
Median filters: example

Filters have width 5:

<table>
<thead>
<tr>
<th>INPUT</th>
<th>MEDIAN</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>••••••</td>
<td>••••••</td>
<td>••••••</td>
</tr>
<tr>
<td>••••••</td>
<td>••••••</td>
<td>••••••</td>
</tr>
<tr>
<td>••••••</td>
<td>••••••</td>
<td>••••••</td>
</tr>
</tbody>
</table>
Median filters : analysis

- median completely discards the spike, linear filter always responds to all aspects
 - median filter preserves discontinuities, linear filter produces rounding-off effects
 - DON'T become all too optimistic
Median filter : results

3 x 3 median filter:

sharpens edges, destroys edge cusps and protrusions
Median filters: results

Comparison with Gaussian:

e.g. upper lip smoother, eye better preserved
Example of median

10 times 3 X 3 median

patchy effect
important details lost (e.g. ear-ring)
Anisotropic diffusion: principle

non-linear filter

method:

1. Gaussian smoothing across homogeneous intensity areas
2. No smoothing across edges
The Gaussian filter revisited

The diffusion equation

\[\frac{\partial f(\vec{x}, t)}{\partial t} = \nabla \cdot (c(\vec{x}, t) \nabla f(\vec{x}, t)) \]

Initial/Boundary conditions

\[f(\vec{x}, 0) = i(x, y), \text{ for } \vec{x} \in \Omega \]
\[f(\vec{x}, t) = 0, \text{ for } \vec{x} \in \delta(\Omega) \]

If \(c(\vec{x}, t) = c \)

\[\frac{\partial f(\vec{x}, t)}{\partial t} = c \Delta f(\vec{x}, t) \quad \text{in1D:} \quad \frac{\partial f(x, t)}{\partial t} = c \frac{\partial^2 f(x, t)}{\partial x^2} \]

Solution is a convolution!

\[f(\vec{x}, t) = f(\vec{x}, 0) * g(\vec{x}, t) = i(\vec{x}) * g(\vec{x}, t) \]
Diffusion as Gaussian lowpass filter

\[f(\vec{x}, t) = i(\vec{x}) \ast \frac{1}{(2\pi)^{d/2}\sqrt{ct}} \exp \left\{ -\frac{\vec{x} \cdot \vec{x}}{4ct} \right\} \]

Gaussian filter with time dependent standard deviation:

\[\sigma = \sqrt{2ct} \]

Nonlinear version can change the width of the filter locally

\[c(\vec{x}, t) = c(f(\vec{x}, t)) \]

Specifically depending on the edge information through gradients

\[c(\vec{x}, t) = c(|\nabla f(\vec{x}, t)|) \]
Selection of diffusion coefficient

\[c(|\nabla f(\vec{x}, t)|) = \exp \left\{ -\frac{|\nabla f|^2}{2\kappa^2} \right\} \]

or

\[c(|\nabla f(\vec{x}, t)|) = \frac{1}{1 + \left(\frac{|\nabla f|}{\kappa} \right)^2} \]

\(\kappa\) controls the contrast to be preserved by smoothing actually edge sharpening happens.
Dependence on contrast

\[C \]

\[\kappa \]

\[|\nabla f| \]
Computer Vision

Noisy image

Ideal image

After 50 iter

Isotropic
Let’s see what really happens in 1D

Take \(c(p) = e^{-p^2} \) with \(p(x,t) = \frac{\partial f}{\partial x}(x,t) \)

\[
\frac{\partial f}{\partial t} = \frac{\partial}{\partial x}\left(c(p) \frac{\partial f}{\partial x} \right) = c(p) \frac{\partial^2 f}{\partial x^2} + \left(\frac{\partial c}{\partial p} \right) \left(\frac{\partial p}{\partial x} \right) \frac{\partial f}{\partial x}
\]

with \(\frac{\partial p}{\partial x} = \frac{\partial^2 f}{\partial x^2} \) and \(\frac{\partial f}{\partial x} = p \)

yields

\[
\frac{\partial f}{\partial t} = a(p) \frac{\partial^2 f}{\partial x^2}
\]

with \(a(p) = c(p) + p \frac{dc}{dp} = e^{-p^2} \left(1 - 2p^2 \right) \)
Anisotropic diffusion

result: diffusion with gradient dependent sign:
Anisotropic diffusion: Numerical solutions

When \(c \) is not a constant solution is found through solving the equation

\[
\frac{\partial f(\vec{x}, t)}{\partial t} = \nabla \cdot (c(\vec{x}, t) \nabla f(\vec{x}, t))
\]

Partial differential equation

Numerical solutions through discretizing the differential operators and integrating

Finite differences in space and integration in time
Finite difference approximation of the divergence operator

\[\nabla^2 \approx = \]

\[\begin{array}{ccc}
1 & -2 & 1 \\
1 & -4 & 1 \\
1 & -2 & 1 \\
\end{array} \]

\[\begin{array}{ccc}
1 & 1 \\
-1 & -1 \\
-1 & 1 \\
\end{array} \]
Divergence in the presence of c

$$\text{div}(c\nabla) = C_1 \begin{bmatrix} 1 & -1 \end{bmatrix} + C_2 \begin{bmatrix} 1 & -1 \end{bmatrix} + C_3 \begin{bmatrix} -1 & 1 \end{bmatrix} + C_4 \begin{bmatrix} -1 & 1 \end{bmatrix}$$

Coefficients depend on derivatives of c
Anisotropic diffusion: Output

End state is homogeneous
Restraining the diffusion

adding restraining force:

\[
\frac{\partial f}{\partial t} = \Delta \cdot (c(|\nabla f|)\nabla f) - \frac{1}{\sigma^2}(f - i)
\]
Overview

1. Preliminaries
 a. Reminders from previous course
 b. Fourier power spectra of images

2. Noise suppression
 a. Convolutional (Linear) filters
 b. Non-linear filters

3. Image de-blurring
 a. Unsharp masking
 b. Inverse Filtering
 c. Wiener Filters

4. Contrast enhancement
 a. Histogram Equalization
Computer Vision

What we want
Original Image
What we observe
Blurred image

Deblurring
Unsharp masking

simple but effective method

image independent

linear

used e.g. in photocopierns and scanners
Unsharp masking : sketch

(a) red = original
black = smoothed

(b) original – smooth

(c) original + difference
Unsharp masking : principle

Interpret blurred image as snapshot of diffusion process

\[\frac{\partial f}{\partial t} = c(\nabla^2 f) \]

In a first order approximation, we can write

\[f(x, y, t) \approx f(x, y, 0) + \frac{\partial f}{\partial t} t \]

Hence,

\[f(x, y, 0) \approx f(x, y, t) - \frac{\partial f}{\partial t} t = f(x, y, t) - ct\nabla^2 f \]

Unsharp masking produces \(o \) from \(i \)

\[o = i - k\nabla^2 i \]

with \(k \) a well-chosen constant
Need to estimate $\nabla^2 i(x, y)$

DOG (Difference-of-Gaussians) approximation for Laplacian:

Our 1D example:

Convolution mask in 2D:
Unsharp masking: Analysis

\[o = i - k \nabla^2 i \]

The edge profile becomes steeper, giving a sharper impression.

Under- and overshoots flanking the edge further increase the impression of image sharpness.
Unsharp masking : images

![Image 1](image1.jpg)

![Image 2](image2.jpg)
Inverse filtering

Relies on system view of image processing

Frequency domain technique

Defined through Modulation Transfer Function

Links to theoretically optimal approaches
A system view on image restoration

Input

\(i(x,y) \)

System: \(\mathcal{O} \)

\((b(x,y)) \)

Output

\(f(x,y) \)

\(i,b \) known \(f=?: \) simulation, smoothing
\(i,f \) known \(b=?: \) system identification
\(b,f \) known \(i=?: \) image restoration

for de-blurring: \(b \) is the blurring filter
Inverse filtering: principle

Frequency domain technique

suppose you know the MTF $B(u, v)$ of the blurring filter

$$f(x, y) = b(x, y) * i(x, y)$$

$$F(u, v) = B(u, v)I(u, v)$$

to undo its effect new filter with MTF $B'(u, v)$ such that

$$B'(u, v)B(u, v) = 1$$

$$I(u, v) = B'(u, v)F(u, v)$$
Inverse filtering : formal derivation

\[B'(u, v) = \frac{1}{B(u, v)} \]

For additive noise after filtering

\[F(u, v) = B(u, v)I(u, v) + N(u, v) \]

Result of inverse filter

\[F(u, v)B'(u, v) = I(u, v) + \frac{N(u, v)}{B(u, v)} \]
Problems of inverse filtering

\[F(u, v) = B(u, v)I(u, v) + N(u, v) \]

- Frequencies with \(B(u, v) = 0 \)
 Information fully lost during filtering
 Cannot be recovered
 Inverse filter is ill-defined

\[F(u, v)B'(u, v) = I(u, v) + N(u, v)/B(u, v) \]

- Also problem with noise added after filtering
 \(B(u, v) \) is low -> \(1/B(u, v) \) is high,
 VERY strong noise amplification
1D Example

*
Restoration of noisy signals
Inverse filtering : 2D example

we will apply the method to a Gaussian smoothed example (\(\sigma = 16 \) pixels)
Inverse filtering : 2D example

handwaving method 1:

$$C_v B_v u + \cdot = \cdot(1), (2)$$

»ideal MTF $1/B(u,v)$ for large B tends to $1/C$ when $B(u,v) \to 0$

noise leads to spurious high frequencies
The Wiener Filter

Looking for the optimal filter to do the deblurring

Take into account the noise to avoid amplification

Optimization formulation

Filter is given analytically in the Fourier Domain
Cross-correlation

Signals \(a(x,y)\), \(b(x,y)\), cross-correlation

\[
\phi_{ab} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(\xi - x, \eta - y) b(\xi, \eta) \, d\xi \, d\eta
\]

Correlation between image a and b at different shifts

Difference with convolution: no mirroring
Auto-correlation: \(\phi_{aa}(x,y)\): symmetric, global maximum at (0,0)

Power spectrum and auto-correlation are linked!

Wiener-Kintschnin Theorem

\[
\mathcal{F}(\phi_{aa}) = \Phi_{aa}(u, v) = |A(u, v)|^2 = A^*(u, v)A(u, v)
\]
The Wiener filter: optimal filter

Looking for the output \(o \) being most similar to the desired signal \(d \), usually the original input \(i \)

This means:

\[
\begin{align*}
 j & = h \ast i + n \\
 o & = h' \ast j \\
 E & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (o(x, y) - d(x, y))^2 \, dx \, dy
\end{align*}
\]

Can be solved analytically, the resulting filter in the frequency domain is

\[
WF(H) = H'(u, v) = \frac{H(u, v) \Phi_{ii}}{H^*(u, v) H(u, v) \Phi_{ii} + \Phi_{nn}}
\]

where \(\frac{\Phi_{ii}}{\Phi_{nn}} \) is the signal-to-noise ratio (SNR)
Behaviour of the Wiener filter

\[Wf(H) = H'(u, v) = \frac{H(u, v)}{H^*(u, v)H(u, v) + 1/\text{SNR}} \]

\[\text{SNR} = \frac{\Phi_{ii}}{\Phi_{nn}} \]

- \(H(u, v) = 0 \implies Wf(H) = 0 \)
- \(\text{SNR} \to \infty \implies 1/\text{SNR} \to 0 \)
- \(\text{SNR} \to 0 \implies 1/\text{SNR} \to \infty \)
Wiener filter: Noiseless reconstruction

Medium confidence

High confidence
Wiener filter: Noisy reconstruction

Low confidence Medium confidence High confidence

Correct SNR
Wiener filtering : example

spurious high freq. eliminated, conservative
Wiener filter: problems of application

\[
O(u,v) = Wf(H)(H(u,v)I(u,v)) \\
= (Wf(H)H(u,v))I(u,v)
\]

\[
Ef = Wf(H)H \text{ is the effective filter (should be } I)\]

- Conservative

 if \(SNR \) is low tends to become low-pass
 blurring instead of sharpening

- \(SNR = \Phi_{ii}(u,v)/\Phi_{nn}(u,v) \) depends on \(I(u,v) \)
 strictly speaking is unknown
 power spectrum is not very characteristic

- \(H(u,v) \) must be known very precisely
Wiener filter: the effective filter

Wiener filter

Effective filter

Low SNR Medium SNR High SNR
Wiener filter: Knowledge of PSF

Signal blurred with $\text{rect}(x/16)$

Deblurring by Wiener filter using $\text{rect}(x/16.5)$, $\text{rect}(x/16)$, $\text{rect}(x/15.5)$
Wiener filter: Knowledge of PSF

Blurring kernel: \(\text{rect}(x/16) \)

Effective Filter: \(\text{rect}(x/16) \ast Wf(x/16) \)
\(\text{rect}(x/16) \ast Wf(x/16.5) \)

Filter kernels overlaid
Overview

1. Preliminaries
 a. Reminders from previous course
 b. Fourier power spectra of images

2. Noise suppression
 a. Convolutional (Linear) filters
 b. Non-linear filters

3. Image de-blurring
 a. Unsharp masking
 b. Inverse Filtering
 c. Wiener Filters

4. Contrast enhancement
 a. Histogram Equalization
Contrast Enhancement

Original Image

Observation with Bad Contrast
Contrast enhancement

Use 1: compensating under-, overexposure

Use 2: spending intensity range on interesting part of the image

We’ll study *histogram equalisation*
Computer Vision

Intensity distribution

Histogram

Cumulative histogram
Intensity mappings

Usually monotonic mappings required

Generic transformation function

Power law transformation

\[I_{\text{new}} = I_{\text{old}}^\gamma \]
Gamma correction

Original

Excite Summer School Zurich
Image Processing for life scientists

$\gamma = 2$

$\gamma = 0.5$
HISTOGRAM EQUALISATION

WHAT: create a flat histogram

HOW: apply an appropriate intensity map depending on the image content

Flat histogram

Cumulative histogram

Method will be generally applicable
Histogram equalisation : example
Histogram equalisation : example
Histogram equalisation: principle

Redistribute the intensities, 1-to-several (1-to-1 in the continuous case) and keeping their relative order, as to use them more evenly.

Ideally, obtain a constant, flat histogram.
Histogram equalisation: algorithm

This mapping is easy to find: It corresponds to the cumulative intensity probability, i.e. by integrating the histogram from the left.
Histogram equalisation: algorithm

This mapping is easy to find:
It corresponds to the cumulative intensity probability,
i.e. by integrating the histogram from the left.
Histogram equalisation : algorithm

suppose continuous probability density \(p(i) \)
cumulative probability distribution :

\[
P(i) = \int_0^i p(i^*) di^*
\]
distribution as our map \(T(i) \) :

\[
i' = T(i) = i_{\text{max}} \int_0^i p(i^*) di^*
\]

\[
p' = p \frac{di}{di'} = p \left(\frac{1}{p} \right) \left(\frac{1}{i_{\text{max}}} \right) = \frac{1}{i_{\text{max}}^*}
\]
Histogram equalisation: sketch

\[i' = T(i) = i_{\text{max}} C(i) = i_{\text{max}} \int_0^i p(i^*) \, di^* \]
Histogram equalisation : result

intensity map:

original and flattened histograms:
Histogram equalisation: analysis

Intervals where many pixels are packed together are expanded.

Intervals with only few corresponding pixels are compressed.
Histogram equalisation: analysis

... BUT we don’t obtain a flat histogram

This is due to the **discrete nature** of the input histogram and the equalisation procedure

Jumps in the discretised cumulative probability distribution lead to gaps in the histogram
Histogram equalisation : example revisited
Histogram equalisation : generalisation

Find a map $i' = T(i)$ that yields probability density p'

$$C'(i') = \int_0^{i'} p'(w)dw = \int_0^i p(v)dv = C(i).$$

with $C'(i')$ and $C(i)$ the prescribed and original cumulative probability distributions

Thus

$$i' = C'^{-1}(C(i)).$$
Histogram equalisation: sketch

\[i' = C'^{-1}(C(i)) \]