Acquisition of Images

Computer Vision

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination

2. cameras

Sensor Array

Light Source
Image Plane

Computer Vision

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination
2. cameras

Image Plane

Sensor Array

Lens System

Computer Vision

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination

2. cameras

Image Plane

Sensor Array

Lens System

Light Source

Surface Reflection

Computer

Vision

illumination

Computer Vision

ACQUIS.
illumination cameras

Illumination

Well-designed illumination often is key in visual inspection

The light was good, but
the hot wax was a problem...

Illumination techniques

Simplify the image processing by controlling the environment

An overview of illumination techniques:

1. back-lighting
2. directional-lighting
3. diffuse-lighting
4. polarized-lighting
5. coloured-lighting
6. structured-lighting
7. stroboscopic lighting

Back-lighting

ACQUIS.

illumination cameras
lamps placed behind a transmitting diffuser plate, light source behind the object
generates high-contrast silhouette images, easy to handle with binary vision
often used in inspection

Computer Vision

Example backlighting

ACQUIS.
illumination cameras

ACQUIS.

illumination cameras

Directional and diffuse lighting

Directional-lighting

generate sharp shadows
generation of specular reflection
(e.g. crack detection)
shadows and shading yield information about shape

Diffuse-lighting

illuminates uniformly from all directions prevents sharp shadows and large intensity variations over glossy surfaces: all directions contribute extra diffuse reflection, but contributions to the specular peak arise from directions close to the mirror one only

Computer Vision

Use of specular reflection - eg crack detection

ACQUIS.
illumination cameras

ACQUIS.
illumination cameras

`Dark’ and `bright’ field

In the `dark' field, the camera is placed out of the area of specular reflection for the normal surface, and only abnormally oriented parts of the surface will lighten up (showing specular reflection) - flaws

In the `bright' field, the camera is placed so to capture the specular reflection for normally oriented parts of the surface. Parts with an abnormal orientation - flaws - will appear dark.

Computer Vision

ACQUIS.
illumination cameras

Example directional lighting

Computer
Vision

Example diffuse lighting

ACQUIS.
illumination cameras

Computer Vision

ACQUIS. 2 uses:

illumination cameras

Polarized lighting

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

Polarised lighting

polarizer/analyzer configurations

law of Malus:

$$
I(\theta)=I(0) \cos ^{2} \theta
$$

Computer Vision

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

ACQUIS.
illumination cameras

Polarized lighting

specular reflection keeps polarisation : diffuse reflection depolarises

suppression of specular reflection :

polarizer/analyzer crossed
prevents the large dynamic range caused by ${ }_{\text {glare }}^{18}$

Computer Vision

Example pol. lighting (pol./an.crossed)

ACQUIS.
illumination cameras

Computer Vision

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

Reflection : dielectric

Polarizer at Brewster angle

Computer Vision

Reflection : conductor

ACQUIS.

illumination cameras

strong reflectors more or less preserve polarization

Polarised lighting

distinction between specular reflection from dielectrics and metals; works under the Brewster angle for the dielectric dielectric has no parallel comp. ; metal does suppression of specular reflection from dielectrics:

polarizer/analyzer aligned distinguished metals and dielectrics

Computer Vision

ACQUIS.
illumination cameras

Example pol. lighting (pol./an. aligned)

ACQUIS.

illumination cameras

Coloured lighting

highlight regions of a similar colour
with band-pass filter: only light from projected pattern (e.g. monochromatic light from a laser)
differentiation between specular and diffuse reflection
comparing colours \Rightarrow same spectral composition of sources!
spectral sensitivity function of the sensors!

Computer Vision

ACQUIS.
illumination cameras

Example coloured lighting

ACQUIS.
illumination cameras

Structured and stroboscopic lighting

 spatially or temporally modulated light pattern
Structured lighting

e.g. : 3D shape : objects distort the projected pattern
(more on this later)

Stroboscopic lighting

high intensity light flash
to eliminate motion blur

Computer
Vision

ACQUIS.
illumination cameras

Stroboscopic lighting

Computer
App: vegetable inspection (colored light + polarization)

ACQUIS.
illumination cameras

MAT 2000

Computer

Vision

cameras

Computer Vision

Optics for image formation

the pinhole model :

ACQUIS.

illumination cameras

Computer Vision

Optics for image formation

the pinhole model :
ACQUIS.
illumination cameras

hence the name:

CAMERA obscura

Computer Vision

Optics for image formation

the pinhole model :
ACQUIS.
illumination cameras

$$
\frac{X_{i}}{X_{o}}=\frac{Y_{i}}{Y_{o}}=\frac{f}{-Z_{o}}=-m
$$

(m = linear magnification)

Computer
Vision

Camera obscura + lens

ACQUIS.
illumination cameras

Computer Vision

The thin-lens equation

 lens to capture enough light :
ACQUIS.

illumination cameras

$$
\frac{1}{Z_{O}}-\frac{1}{Z_{i}}=\frac{1}{f}
$$

assuming
\square spherical lens surfaces
\square incoming light \pm parallel to axis
\square thickness << radii
\square same refractive index on both sides

Computer Vision

The depth-of-field

Only reasonable sharpness in Z-interval

ACQUIS.

illumination cameras

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

decreases with d, increases with Z_{0}
strike a balance between incoming light (d) and large depth-of-field (usable depth range)

Computer Vision

The depth-of-field

ACQUIS.

illumination cameras

$\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}$
Similar expression for $Z_{O}^{+}-Z_{O}$

Computer Vision

ACQUIS.

illumination cameras

The depth-of-field

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

Ex 1: microscopes -> small DoF
Ex 2: special effects -> flood miniature scene with light

Deviations from the lens model

ACQUIS.

illumination cameras

3 assumptions:

1. all rays from a point are focused onto 1 image point
2. all image points in a single plane
3. magnification is constant
deviations from this ideal are aberrations

Aberrations

ACQUIS.
illumination cameras

2 types:

1. geometrical
2. chromatic
geometrical : small for paraxial rays
chromatic : refractive index function of wavelength (Snell's law !!)

Computer Vision

Geometrical aberrations

ACQUIS.
\square spherical aberration
illumination cameras
the most important type
\square radial distortion
\square coma

Computer Vision

ACQUIS.

illumination cameras

Spherical aberration

rays parallel to the axis do not converge

outer portions of the lens yield smaller focal lenghts

Computer Vision

Radial Distortion

ACQUIS.
illumination cameras
magnification different for different angles of inclination

barrel

none

pincushion

Computer Vision

Radial Distortion

ACQUIS.

illumination cameras
magnification different for different angles of inclination

barrel

none

pincushion

The result is pixels moving along lines through the center of the distortion

- typically close to the image center - over a distance d, depending on the pixels' distance r to the center

$$
d=\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}+\ldots\right)
$$

Radial Distortion

magnification different for different angles of inclination

This aberration type can be corrected by software if the parameters $\left(\kappa_{1}, \kappa_{2}, \ldots\right)$ are known ${ }^{45}$

Computer Vision

Radial Distortion

magnification different for different angles of inclination

Some methods do this by looking how straight lines curve instead of being straight

Computer Vision

ACQUIS.

illumination cameras

Chromatic aberration

rays of different wavelengths focused in different planes

The image is blurred and appears colored at the fringe
cannot be removed completely
but achromatization can be achieved at some well chosen wavelength pair, by combining lenses made of different glasses
sometimes achromatization

Computer

 VisionACQUIS.

we consider 2 types:

illumination cameras

1. $C C D$

2. CMOS

Computer Vision

ACQUIS.
illumination cameras

Cameras

CCD photon to electron CMOS

CCD = Charge-coupled device
CMOS = Complementary Metal Oxide Semicondiuctor

Computer
Vision

The CCD (inter-line) camera

ACQUIS.
illumination cameras

Computer
Vision

ACQUIS.

illumination cameras

CMOS

Same sensor elements as CCD

Each photo sensor has its own amplifier
More noise (reduced by subtracting 'black' image)
Lower sensitivity (lower fill rate)
Uses standard CMOS technology
Allows to put other components on chip
'Smart' pixels


```
CMOS image sensor
```


Computer Vision

ACQUIS.

illumination cameras

CMOS

Resolution trend in mobile phones
Volume and revenue opportunity for high resolution sensors

ACQUIS.

illumination cameras

CCD vs. CMOS

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout
- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

2006 was year of sales cross-over

ACQUIS.

illumination cameras

CCD vs. CMOS

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout

- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

In 2015 Sony said to stop CCD chip production

Computer Vision

Colour cameras

ACQUIS.

illumination cameras

We consider 3 concepts:

1. Prism (with 3 sensors)
2. Filter mosaic
3. Filter wheel

Computer Vision

Prism colour camera

ACQUIS.

illumination cameras

Separate light in 3 beams using dichroic prism Requires 3 sensors \& precise alignment

Good color separation

Computer
Vision

ACQUIS.
illumination cameras

Prism colour camera

Computer Vision

ACQUIS.
illumination cameras

Filter mosaic

Coat filter directly on sensor

Bayer filter
Demosaicing (obtain full colour \& full resolution image)

ORIGINAL IMAGE

CCD ARRAY WITH
BAYER PATTERN SHOWING LOCATION

Computer Vision

Filter mosaic

Sensor Architecture

ACQUIS.

illumination cameras

Color filters lower the effective resolution,
Fiji Corporation hence microlenses often added to gain more light on the small pixeds

Computer Vision

Filter wheel

ACQUIS.

illumination cameras

Rotate multiple filters in front of lens
Allows more than 3 colour bands

Only suitable for static scenes

Computer Vision

ACQUIS.

illumination cameras

Prism vs. mosaic vs. wheel

ACQUIS.	approach \# sensors Resolution illumination cameras	Prism Cost Framerate High Artefacts Bands	High High Low 3	$\frac{\text { Mosaic }}{1}$ Average Low High Aliasing 3
	High-end cameras	Low-end cameras	Wheel Good Average Low Motion 3 or more	
			applications	

Computer
Vision

Geometric camera model

perspective projection

ACQUIS.
illumination cameras

(Man Drawing a Lute, woodcut, 1525, Albrecht Därrer)

Models for camera projection

the pinhole model revisited :

ACQUIS.

illumination cameras

center of the lens $=$ center of projection
notice the virtual image plane
this is called perspective projection

Computer Vision

ACQUIS.
illumination cameras

Models for camera projection

We had the virtual plane also in the original reference sketch:

Computer Vision

ACQUIS.

illumination cameras

Perspective projection

\square origin lies at the center of projection
\square the Z_{c} axis coincides with the optical axis
$\square X_{c}$-axis || to image rows, Y_{c}-axis || to columnss

Computer Vision

ACQUIS.

illumination cameras

Perspective projection

$$
u=f \frac{X}{Z}
$$

$$
v=f \frac{Y}{Z}
$$

Computer Vision

ACQUIS.
illumination cameras

Pseudo-orthographic projection

$$
u=f \frac{X}{Z} \quad v=f \frac{Y}{Z}
$$

If Z is constant $\Rightarrow x=k X$ and $y=k Y$, where $k=f / Z$
i.e. orthographic projection + a scaling

Good approximation if $f / Z \pm$ constant, i.e. if objects are small compared to their distance from the camera

Computer Vision

ACQUIS.

Pseudo orthographic

Perspective

Pictoral comparison

illumination cameras

Projection matrices

the perspective projection model is incomplete : what if :

1. 3 D coordinates are specified in a world coordinate frame
2. Image coordinates are expressed as row and column numbers

We will not consider additional refinements, such as radial distortions,...

Computer Vision ACQUIS.
illumination cameras

Projection matrices

Computer Vision

ACQUIS.
illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

$\rightarrow\left(x_{0}, y_{0}\right)$ the pixel coordinates of the principal point
$\rightarrow k x$ the number of pixels per unit length horizontally
$\rightarrow k y$ the number of pixels per unit length vertically
$\rightarrow s$ indicates the skew; typically $s=0$

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB1: often only integer pixel coordinates matter

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB2 : $k y / k x$ is called the aspect ratio

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB3: $k x, k y, s, x_{0}$ and y_{0} are called internal camera parameters

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB4: when they are known, the camera is internally calibrated

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB5 : vector C and matrix $\mathrm{R} \in \mathrm{SO}$ (3) are the ra external camera parameters

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB6 : when these are known, the camera is ュ ra externally calibrated

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB7 : fully calibrated means internally and externally calibrated

Computer Vision

Homogeneous coordinates

Often used to linearize non-linear relations

$$
\begin{array}{ll}
\text { 2D } \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & \rightarrow\binom{x / z}{y / z} \\
\text { 3D } \quad\left(\begin{array}{l}
X \\
Y \\
Z \\
W
\end{array}\right) & \rightarrow\left(\begin{array}{l}
X / W \\
Y / W \\
Z / W
\end{array}\right)
\end{array}
$$

Homogeneous coordinates are only defined up to a factor

Computer Vision

Projection matrices

ACQUIS.

illumination cameras

$$
\begin{aligned}
& u=f \frac{r_{11}\left(X-C_{1}\right)+r_{12}\left(Y-C_{2}\right)+r_{13}\left(Z-C_{3}\right)}{r_{31}\left(X-C_{1}\right)+r_{32}\left(Y-C_{2}\right)+r_{33}\left(Z-C_{3}\right)} \\
& v=f \frac{r_{21}\left(X-C_{1}\right)+r_{22}\left(Y-C_{2}\right)+r_{23}\left(Z-C_{3}\right)}{r_{31}\left(X-C_{1}\right)+r_{32}\left(Y-C_{2}\right)+r_{33}\left(Z-C_{3}\right)}
\end{aligned}
$$

Exploiting homogeneous coordinates:

$$
\tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{ccc}
f r_{11} & f r_{12} & f r_{13} \\
f r_{21} & f r_{22} & f r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{l}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right)
$$

Computer Vision

Projection matrices

ACQUIS.
illumination cameras

$$
\left\{\begin{array}{l}
x=k_{x} u+s v+x_{0} \\
y=\quad k_{y} v+y_{0}
\end{array}\right.
$$

Exploiting homogeneous coordinates:

$$
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right) \tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
$$

Computer Vision

Projection matrices

Thus, we have :

$$
\begin{gathered}
\tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{ccc}
f r_{11} & f r_{12} & f r_{13} \\
f r_{21} & f r_{22} & f r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{l}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right) \\
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right) \tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
\end{gathered}
$$

Computer Vision

Projection matrices

Concatenating the results :

ACQUIS.

illumination cameras
$\tau\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{ccc}k_{x} & s & x_{0} \\ 0 & k_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}f r_{11} & f r_{12} & f r_{13} \\ f r_{21} & f & r_{22} & f \\ r_{23} \\ r_{31} & & r_{32} & \\ r_{33}\end{array}\right)\left(\begin{array}{l}X-C_{1} \\ Y-C_{2} \\ Z-C_{3}\end{array}\right)$
Or, equivalently :
$\tau\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{ccc}k_{x} & s & x_{0} \\ 0 & k_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)\left(\begin{array}{l}X-C_{1} \\ Y-C_{2} \\ Z-C_{3}\end{array}\right)$

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Re-combining matrices in the concatenation :

$$
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{l}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right)
$$

yields the calibration matrix K :

$$
K=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
f k_{x} f s & x_{0} \\
0 & f k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)
$$

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

$$
\text { We define } \quad p=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) ; \quad P=\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right), \quad \widetilde{P}=\left(\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

yielding
$\rho p=K R^{t}(P-C)$ for some non-zero $\rho \in \mathbb{R}$
or, $\quad \rho p=K\left(R^{t} \mid-R^{t} C\right) \widetilde{P}$
or, $\quad \rho p=(M \mid t) \widetilde{P}$ with $\operatorname{rank} M=3$

Computer Vision
illumination cameras

From object radiance to pixel grey levels

After the geometric camera model...
... a photomelrle camera model

2 steps:

1. from object radiance to image irradiance
2. from image irradiance to pixel grey level

ACQUIS.
illumination cameras

Image irradiance and object radiance

we look at the irradiance that an object patch will cause in the image
assumptions :
radiance R assumed known and object at large distance compared to the focal length

Is image irradiance directly related to the radiance of the image patch?

Computer Vision

ACQUIS.

illumination cameras

The viewing conditions

$$
I=R \frac{A_{l}}{f^{2}} \cos ^{4} \alpha
$$

the $\cos ^{4}$ law

Computer
Vision

ACQUIS.
illumination cameras

The $\cos ^{4}$ law cont' d

Especially strong effects for wide-angle and fisheye lenses

Computer Vision

From irradiance to gray levels

ACQUIS.

illumination cameras

Dark reference

From irradiance to gray levels

ACQUIS.

illumination cameras

$\qquad f=$	$\rho_{1}^{\gamma}+d$
set w. size diaphragm	Gain
close to 1 nowadays	
signal w. cam cap on	Dark reference

