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Computer
Vision Recall – photons to digital signal

• CCD     : Charge-coupled device
• CMOS : Complementary Metal Oxide Semiconductor
• We will study the effects of the digitization / discretization. 

Part I - Intro
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Computer
Vision Discretization / Digitization

• Necessary computer to process an image

• Includes two parts 
1. Sampling – spatial discretization, creates “pixels”

2. Quantization – intensity discretization, creates “grey levels”

Part I - Intro
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Computer
Vision Sampling & Quantization

Part I – Intro

84   133   226   212   218   218   222   212   218   222   226   218

75   156   177   218   212   218   218   218   218   222   218   218

96     84   133   203   218   218   218   222   212   218   222   218

123    75   111   156   212   218   212   212   218   218   218   226

93     75     71   133   185   231   226   226   222   212   218   218

51     75     75     75   156   206   218   218   218   222   212   222

44   110     75     65   143   194   231   218   218   218   218   218

52   123     69     84     60   156   199   231   231   222   226   226

52     75     84     81     65     69   150   231   231   226   231   231

36     36     84    93      84     71   156   160   240   240   231   231

36     40   113     75     69     75     71   133   194   240   240   240

52     52   105     85     69     75     75   123   111   222   231   231

69     44     69     93     81     75     75     69   150   177   247   240

73     44     40     96   101     75     75     75     84   133   231   240

Creating finite number of points in space in 
a grid, i.e. pixels, and intensity value in each
pixel is represented with finite number of 
bits in the computer. 

The original scene is continuous in space and 
intensity value
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Computer
Vision Example of sampling

Part I – Intro

384 x 288 pixels

48 x 36 pixels92 x 72 pixels

192 x 144 pixels
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Computer
Vision Example of quantization

Part I – Intro

2 levels - binary 

256 levels – 1 byte8 levels

4 levels
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Computer
Vision Image distortion through sampling

Part I – Intro
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Computer
Vision Image distortion through quantization

Part I – Intro
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Computer
Vision Remarks

1. Binary images – 1-bit quantization – are useful in industrial 
applications. They usually have control over imaging 
conditions, e.g. background color, lighting conditions, …

2. Non-uniform sampling and/or quantization is sometimes 
used for specialized applications
a. Fine sampling to capture details
b. Fine quantization for homogeneous regions 

3. Different sampling strategies than square grids exist

Part I – Intro



Computer
Vision

Computer
Vision Different sampling schemes

• You need regular, image covering 
tessellation

• There are 11 polygons to achieve 
this. If you want to use the same 
polygon across the image then 
only 3, shown on the right. 

• Rectangular (square) is the most 
popular

• Hexagonal has advantages (more 
isotropic, no connectivity 
ambiguities). Similar structure is 
seen in the retina of various 
species.

Part I – Intro
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Computer
Vision Discretization / Digitization

• Necessary computer to process an image

• Includes two parts 
1. Sampling – spatial discretization, creates “pixels”

2. Quantization – intensity discretization, creates “grey levels”

Part I - Intro
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Computer
Vision A model for sampling

• There are two essential steps

1. Integrate brightness over a cell window
Leads to blurring type degradation 

2. Read out values only at the pixel centers
Leads to aliasing and leakage, frequency domain issues

Part I – Intro
Part I – Sampling 
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Computer
Vision STEP I: integrating over a cell window
Part I – Intro

Part I – Sampling 

This is a convolution:
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Computer
Vision Convolution

• While the previous convolution was in continuous domain, 
we’ll look at discrete convolution to get an intuition. 

Part I – Intro
Part I – Sampling 

Image: x(i,j)

Convolutional kernel: w(i,j)
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Computer
Vision Convolution

• While the previous convolution was in continuous domain, 
we’ll look at discrete convolution to get an intuition. 

Part I – Intro
Part I – Sampling 

Image: x(i,j)

Convolutional kernel: w(i,j)
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Computer
Vision

Image

kernel

a b c

d e f

g h j

a cb

d fe

g jh

Part I – Intro
Part I – Sampling 



Computer
Vision

Computer
Vision Convolution

• While the previous convolution was in continuous domain, 
we’ll look at discrete convolution to get an intuition. 

Part I – Intro
Part I – Sampling 

Consider the continuous case as the 
limit where pixels are very small as well 
as the convolutional kernel is formed to 
correspond to that with many very 
small elements.

The kernel for this case is a rectangular 
box. 
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Computer
Vision Properties of convolution

Commutative 

Associative 

Part I – Intro
Part I – Sampling 
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Computer
Vision The Fourier Transform

• An important tool we should remind ourselves is the Fourier 
Transform (FT).

• This is crucial to understand the effects of STEPI as well as 
STEPII taken in sampling. 

• Particularly, it is difficult to understand what type of 
information we lose when we convolve an image with a 
kernel with a box shape.

• Using FT, this becomes much easier!

Part I – Intro
Part I – Sampling 
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Computer
Vision Characterization of functions in the 

frequency domain
• Represent any signal as a linear combination of orthonormal 

basis functions 

)( vyuxie 2 )(sin)(cos vyuxivyux   22

22

1

vu 


• Waves with wavelength 
orthogonal to the stripes of

Part I – Intro
Part I – Sampling 
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Computer
Vision The Fourier Transform: definition
Part I – Intro

Part I – Sampling Linear decomposition of functions in the new basis
Scaling factor for basis function (u,v)

Reconstruction of the original function in the spatial
domain: weighted sum of the basis functions

The Fourier Transform

The Inverse Fourier Transform
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Computer
Vision Fourier Coefficients

Complex function

Magnitude

Phase - angle

Part I – Intro
Part I – Sampling 
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Computer
Vision Decomposition visually
Part I – Intro

Part I – Sampling 
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Computer
Vision Example of FT
Part I – Intro

Part I – Sampling 
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Computer
Vision Effect of additional components
Part I – Intro

Part I – Sampling 
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Computer
Vision Importance of the magnitude in FT

• Image with periodic structure

FT has peaks at spatial frequencies of repeated texture

Part I – Intro
Part I – Sampling 
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Computer
Vision Importance of the magnitude in FT
Part I – Intro

Part I – Sampling 

Periodic background removed

remove 
peaks
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Computer
Vision General structure of the magnitude

cross-section

•Magnitude generally decreases with      
higher spatial frequencies

•phase appears less informative

Phase

Part I – Intro
Part I – Sampling 
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Computer
Vision Importance of the phase in FT

magnitude

phase phase

Part I – Intro
Part I – Sampling 
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Computer
Vision The convolution theorem
Part I – Intro

Part I – Sampling 

What is the FT of a convolution? 
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Computer
Vision The convolution theorem 
Part I – Intro

Part I – Sampling 

Noticing the two separate FT in this four integral term leads to the main result

Space convolution = frequency multiplication
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Computer
Vision Reciprocity in convolution theorem
Part I – Intro

Part I – Sampling 

Space multiplication = frequency convolution
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Computer
Vision Point spread function and 

Modulation transfer function
Part I – Intro

Part I – Sampling 

modulation transfer function

• When we talk about an imaging system where there is an image i(x,y) and 
a kernel r(x,y) that convolves the image, it is common to call the kernel 
the point spread function

• The convolution spreads the intensities to adjacent pixels based on r(x,y)
• Widely used terminology in microscopic imaging
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Computer
Vision STEP I: integrating over a cell window
Part I – Intro

Part I – Sampling 

This is a convolution:
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Computer
Vision Integrating over a cell window

Assuming p(x,y) is symmetric around the origin
From convolution theorem
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Computer
Vision Modulation transfer function of the 

window function

Fourier transform of window :

2D sinc function
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Computer
Vision Modulation transfer function – 2D sinc

real  no phase shifts

predominantly low-pass

however, phase reversals !
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Computer
Vision Illustration of the effect of 2D sinc
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Computer
Vision Summary for STEP I

• Convolve with a window 
function – rectangular box

• Blurs the image

• May cause phase reversals in 
certain frequencies – modify 
the image content
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Computer
Vision A model for sampling

• There are two essential steps

1. Integrate brightness over a cell window
Leads to blurring type degradation 

2. Read out values only at the pixel centers
Leads to aliasing and leakage, frequency domain issues

Part I – Intro
Part I – Sampling 
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Computer
Vision Local probing of functions

To understand the effect of Step II, we need the probing 
function: Dirac pulse

Function probing (in 1D)

1

xx0
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Computer
Vision Discretization in the spatial domain is 

multiplication with a Dirac train
2D Dirac train / Dirac comb

Fourier transform is also a Dirac train / Dirac comb 

Convolution with a Dirac train: periodic repetition
Yet another duality: discrete vs. periodic 
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Computer
Vision Effect on the frequency domain
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Computer
Vision Effect on the frequency domain

1. After sampling you 
may not get back the 
original signal

2. It depends on the 
frequency domain 
representation, only 
band limited signals 
can be sampled and 
retrieved back

3. Even then you need to 
sample at a certain 
rate
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Computer
Vision The sampling theorem

If the Fourier transform of a function ƒ(x,y) is zero for all 

frequencies beyond ub and vb, i.e. if the Fourier transform is 

band-limited, then the continuous periodic function ƒ(x,y) 

can be completely reconstructed from its samples as long as 

the sampling distances w and h along the x and y directions 

are such that 𝑤 ≤
1

2𝑢𝑏
and ℎ ≤

1

2𝑣𝑏
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Computer
Vision Summary for STEP II

• When we read off one value per pixel area, we are losing 
information on the image indefinitely, if the image is not 
band-limited, which is almost always the case. 

• The information we lose is on the higher frequencies, 
meaning very fine details on edges, corners and texture 
patterns. 
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Computer
Vision Discretization / Digitization

• Necessary computer to process an image

• Includes two parts 
1. Sampling – spatial discretization, creates “pixels”

2. Quantization – intensity discretization, creates “grey levels”

Part I - Intro
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Computer
Vision Quantization

• Create K intervals in the range of possible intensities and 
each interval with only one value

• Measured in bits: log2(K)

• Design choices: 
• Decision levels / boundaries of intervals

• Representative values for each interval

• Simplest selection 
• Equal intervals between min and max

• Use mean in the interval as the representative value 

• Uniform quantizer

• K=256 is used very often in practice
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Computer
Vision The uniform quantizer

• Simple interpretation

• Fine quantization is needed for 
perceptual quality (7-8 bits)

• It can be better designed if we know 
what intensities we expect

• p(z) is the probability density function of 
intensities – constant for uniform 
quantizer
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Computer
Vision Underquantization examples

256 gray level (8 bit) 11 gray level 



Computer
Vision

Computer
Vision Small remarks on quantization

• 8 bits is often used in monochrome images

• 24 bits (8 x 3) used for RGB images per pixel

• Medical imaging may require finer quantization. 12 bits (4096 
levels ) and 16 bits (65536) are often used. 

• Satellite imaging also use 12 or 16 bits regularly. 
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Computer
Vision Part I : Sampling & quantization

1. Discretization of continuous signals
2. Signal representation in the frequency domain
3. Effects of sampling and quantization

Part II : Image enhancement

1. Noise suppression 
2. De-blurring
3. Contrast enhancement
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Computer
Vision

1. Noise suppression 

2. Image de-blurring

3. Contrast enhancement

Original Image Noise Blur Bad Contrast

Three types of image enhancement
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More on Fourier transform

Signal and noise 
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Computer
Vision The Fourier Transform: definition

Linear decomposition of functions in the new basis
Scaling factor for basis function (u,v)

Reconstruction of the original function in the spatial
domain: weighted sum of the basis functions

The Fourier Transform

The Inverse Fourier Transform
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u

v

u

v

Phase
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Vision

Space multiplication = frequency convolution

Space convolution = frequency multiplication

Convolution theorem
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Computer
Vision

i(x,y) ɸii = |I(u,v)|2

Amount of signal at each frequency pair

Most nearby object pixels have similar intensity
Most of the signal lies in low frequencies!
High frequency contains the edge information!

Images are mostly composed of homogeneous areas

Fourier power spectra of images
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Computer
Vision

n(x,y) ɸnn = |N(u,v)|2

• Pure noise has a uniform power spectra
• Similar components in high and low frequencies.

Fourier power spectra of noise
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Computer
Vision

f(x,y) ɸff = |F(u,v)|2

Power spectra is a combination of image and noise

Fourier power spectra of noisy image
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Computer
Vision

ɸii(u,v) / ɸnn(u,v)

High SNR

Low SNR

Low SNRLow SNR

Low SNR

Signal to noise ratio (SNR)
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Vision

Low signal/noise ratio at high frequencies  eliminate these

Smoother image but we lost details!

Only retaining the low frequencies
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Computer
Vision

We cannot simply discard the higher frequencies

They are also introduced by edges  

High frequencies contains noise and 
edge information 
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Computer
Vision

1. Noise suppression 

2. Image de-blurring

3. Contrast enhancement

Original Image Noise Blur Bad Contrast

Three types of image enhancement
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Original Image Noisy Observation

Noise
Suppression
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Computer
Vision Noise suppresion

• In general specific methods for specific types of noise

• We only consider 2 general options here: 

1. Convolutional linear filters – low-pass convolutional filters

2. Non-linear filters - edge-preserving filters
a. Median

b. Anisotropic diffusion
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Goal: remove low-signal/noise part of the spectrum

Such spectrum filters yield “rippling”
due to ripples of the spatial filter and convolution

Approach 1: Multiply the Fourier domain by a mask

Low-pass filtering - principle



Computer
Vision Illustration of rippling
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Approach 2: Low-pass convolution filters
generate low-pass filters that do not cause rippling

Idea: Model convolutional filters in the spatial 
domain to approximate low-pass filtering in the
frequency domain

Convolutional

filter
Frequency

mask

Low-pass filtering - principle



Computer
Vision

One of the most straight forward convolution filters: averaging 
filters

Separable:

1 1 1

1 1 1

1 1 1

=

1

1

1

1 1 1*

1/9 1/25

1/9 1/3 1/3

Average filtering – Box filtering
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Noise is gone. 

Result is blurred!

Example for box/average filtering
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3 x 3 (separable!)

(1+2cos(2u)) (1+2cos(2v))

5 x 5 (separable)

(1+2cos(2u)+2cos(4 u))(1+2cos(2v)+2cos(4 v))

not even low-pass!

MTF for box / average filtering

MTF: Modulation Transfer Function
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1. Masking frequency domain with window type low-pass filter yields 
sinc-type of spatial filter and ripples -> disturbing effect

2. box filters are not exactly low-pass, ripples in the frequency domain 
at higher freq. remember phase reversals?

no ripples in either domain required!

So far
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MTF : (2+2cos(2 u))(2+2cos(2 v))

iterative convolutions of (1,1)

only odd filters : (1,2,1), (1,4,6,4,1)

2D : Also separable

Solution: Binomial filtering



Computer
Vision Results of binomial filtering
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f :

Gaussian with b controlling the amount of smoothing

Limit of binomial filtering
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Gaussian is limit case of binomial filters

noise gone, no ripples, but still blurred…

Actually linear filters cannot solve this problem

Gaussian smoothing
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• separable filters can be implemented efficiently

• large filters through multiplication in the frequency domain

• integer mask coefficients increase efficiency powers of 2 can 
be generated using shift operations

• In Gaussian filter increasing b (the standard deviation) leads to 
more smoothing and blurring

Some notes on implementation
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High SNR

Low SNR

Low SNRLow SNR

Low SNR

Can convolutional filters do a perfect job?

Can they separate edge information from noise in the higher 
frequency components? 

Why?

Questions



Computer
Vision

Computer
Vision Noise suppresion

• In general specific methods for specific types of noise

• We only consider 2 general options here: 

1. Convolutional linear filters – low-pass convolutional filters

2. Non-linear filters - edge-preserving filters
a. Median

b. Anisotropic diffusion
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Computer
Vision Median filtering: principle

• Non-linear filter

• Simple method: 
1. Rank-order neighborhood intensities in a patch of the image

2. Take middle value and assign it to the patch center

3. Go over all the image in a sliding window

• No new grey levels will emerge.
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advantage of this type of filter is its “odd-man-out” effect

e.g.

1,1,1,7,1,1,1,1



?,1,1,1.1,1,1,?

Median filtering – main advantage
“odd-man-out”
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Median filtering with a 
patch width of 5

Mean filtering with a 
box width of 5

Example showing the advantage

Notice that the outlier 
is gone and sharp 
transitions (edge) are 
preserved
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• median completely discards the spike, linear filter always responds 
to all aspects. Great for robustness to outliers and salt-and-pepper 
type noise

• median filter preserves discontinuities, linear filter produces 
rounding-off effects. Great for preserving sharp transitions, high 
frequency components and, essentially, edges and corners.

• DON’T become all too optimistic

Median filtering – is it the solution to 
our blurring problem? 



Computer
Vision

3 x 3 median filter : 

sharpens edges, destroys edge cusps 
and protrusions

Median filtering results
Comparison with Gaussian : 
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10 times 3 X 3 median

patchy effect
important details lost (e.g. ear-ring)

Further results
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For what types of noise would you clearly prefer median filtering over 
Gaussian filtering?

a) Gaussian noise, i.e. noise distributed by independent normal 
distribution

b) Salt and pepper noise

c) Uniform noise, i.e. distributed by uniform distribution

d) Exponential noise model

e) Rayleigh noise

Question
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Computer
Vision Noise suppresion

• In general specific methods for specific types of noise

• We only consider 2 general options here: 

1. Convolutional linear filters – low-pass convolutional filters

2. Non-linear filters - edge-preserving filters
a. Median

b. Anisotropic diffusion
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Computer
Vision Anistropic diffusion: principle

• Non-linear filter

• More complicated method: 

1. Gaussian smoothing across homogeneous 
intensity areas

2. No smoothing across edges
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The diffusion equation

Initial/Boundary conditions

If 

in1D: 

Solution is a convolution! 

Gaussian filter revisited
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Nonlinear version can change the width of the filter 
locally 

Specifically dependening on the edge information 
through gradients

Gaussian filter with time dependent 
standard deviation:

Diffusion as Gaussian low-pass filter
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or

controls the contrast to be preserved by smooting
actually edge sharpening happens

Selection of diffusion coefficient
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c

Dependence on contrast
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Computer
Vision

Noisy image Ideal image

After 50 iter After 1000 iter
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Computer
Vision

Noisy image Ideal image

After 50 iter Isotropic
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End state is homogeneous

Unrestrained anisotropic diffusion
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adding restraining force : 

Restraining anisotropic diffusion



Computer
Vision

Noisy image Binomial 7x7

Median 5x5 Aniso Diff. wr
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When c is not a constant solution is found 

through solving the equation 

Partial differential equation

• Numerical solutions through discretizing the differential 

operators and integrating

• Finite differences in space and integration in time

Anisotropic diffusion – numerical 
solutions
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Original Image
What we want

Blurred image
What we observe

Deblurring
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• simple but effective method

• image independent

• linear

• used e.g. in photocopiers and scanners

Approach I: Unsharp masking
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red = 
original

black = 
smoothed

orginal –
smooth

original +
difference

Unsharp masking - sketch
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Interpret blurred image as snapshot of diffusion process
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Unsharp masking produces o from i

ikio 2

with k a well-chosen constant

Unsharp masking - principle
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DOG (Difference-of-Gaussians) approximation 
for Laplacian : 

Our 1D example: Convolution 
mask in 2D:

Need to estimate 
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ikio 2

The edge profile becomes steeper, giving a sharper impression

Under-and overshoots flanking the edge further increase the 

impression of image sharpness

Unsharp masking analysis



Computer
Vision Unsharp masking results
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• Relies on system view of image processing

• Frequency domain technique

• Defined through Modulation Transfer Function

• Links to theoretically optimal approaches

Approach II: Inverse filtering
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Frequency domain technique

suppose you know the MTF B(u,v) of the blurring filter 

to undo its effect new filter with MTF B’ (u,v) such that

Inverse filtering principle
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For additive noise after filtering

Result of inverse filter

Inverse filtering principle
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• Frequencies with B (u,v) = 0

Information fully lost during filtering
Cannot be recovered
Inverse filter is ill-defined

• Also problem with noise added after filtering 

B(u,v) is low = 1/B(u,v) is high, 
VERY strong noise amplification

Inverse problem’s main issue
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*

xx

x

1D example
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x x

x x

Deblurring the noisy version
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we will apply the method to a Gaussian smoothed example ( = 16 pixels)

Inverse filtering example on an image



Computer
Vision

noise leads to spurious high frequencies

Result
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• Looking for the optimal filter to do the deblurring

• Consider the noise to avoid amplification

• A much better version of inverse filtering

• Optimization formulation

• Filter is given analytically in the Fourier Domain

Wiener filter
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• 

• 

• 

Wiener filter and its behavior
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Medium confidence – medium SNR assumption

High confidence – high SNR assumption

x

x

Deblurring noise-free signal
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Medium confidence

Correct SNR

High confidenceLow confidence

Deblurring noisy signal
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spurious high freq. eliminated, conservative

Wiener filtering example
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• Conservative if SNR is low tends to become low-pass 
blurring instead of sharpening

• SNR =  Φii(u,v)/Φnn(u,v) depends on I(u,v) strictly speaking is unknown

• H(u,v) must be known very precisely

is the effective filter (should be 1) 

Problems in applying Wiener filtering
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Original Image Observation
with

Bad Contrast

Contrast 
Enhancement
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Computer
Vision Contrast Enhancement

• Two use cases: 

1. Compensating under-, over-exposure

2. Spending intensity range on interesting part of the image

• We will study histogram equalization
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Histogram

Cumulative histogram

Intensity distributions - histogram
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Generic transformation function

Old intensity

N
ew

 in
te

n
si

ty

Power law transformation

Inew = Iold
γ

Usually monotonic mappings required

Intensity mappings
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WHAT : create a flat histogram

HOW :
apply an appropriate intensity map

depending on the image content

method will be generally applicable

Flat histogram

Cumulative 
histogram

Histogram equalization
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Vision Histogram equalization example



Computer
Vision Histogram equalization example
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Redistribute the intensities, 1-to-several (1-to-1 in the continuous case) 

and keeping their relative order, as to use them more evenly

Ideally, obtain a constant, flat histogram

0 0

maxi
maxi

Histogram equalization - principle
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This mapping is easy to find:

It corresponds to the cumulative intensity probability or cumulative 

histogram

Histogram equalization - algorithm

Histogram Cumulative histogram
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C’ C

1

0

intensity intensity

ii’ maximaxi

Cumulative probability

actual cum.

probability

target cum.

probability

Algorithm sketch
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suppose continuous probability density of original intensities i:

Mathematical justification in 
continuous case

Our mapping

Probability density of the transformed intensities are given as

Indeed a flat distribution!


