
Computer
Vision Recap from the last two weeks

§ Two weeks ago: 
§ How to capture light with the camera
§ Projection matrices from real world to camera
§ Discretization of images
§ Spatial and frequency domain
§ Sampling and quantization
§ LSI systems and Convolution



Computer
Vision Recap from the last two weeks

§ Last week:
§ Feature extraction 
§ Local features
§ Invariance to geometric and photometric changes
§ Points of interest
§ Local regions
§ Descriptive features
§ Combining points of interest, regions and descriptive 

features: SIFT, SURF, 



Computer
Vision This week

§ Image enhancement
§ Removing noise, improving sharpness, highlighting aspects
§ Simplifying interpretation
§ More pleasing look
§ Normalization for further processing

§ Basic feature detection
§ Identifying the points of interest in an image
§ Edges
§ Corners



Computer
Vision

Image
Enhancement 

è



Computer
Vision Learning objectives: what can you do 

after today?

• Reduce noise in images with linear and non-
linear filters

• Choose appropriate filters for different noise 
patterns

• Describe anisotropic diffusion 
• Sharpen / Deblur images
• Describe Wiener filter 
• Improve image contrast



Computer
Vision Three types of image enhancement

1. Noise suppression 

2. Image de-blurring

3. Contrast enhancement

Original Image Noise Blur Bad 
Contrast



Computer
Vision Overview

1. Preliminaries
a. Reminders from previous lecture
b. Fourier power spectra of images

2. Noise suppression
a. Convolutional (Linear) filters
b. Non-linear filters 

3. Image de-blurring
a. Unsharp masking
b. Inverse Filtering
c. Wiener Filters

4. Contrast enhancement
a. Histogram Equalization
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Computer
Vision

Reminders from previous lecture:
Fourier Transform

Linear decomposition of functions in the new basis
Scaling factor for basis function (u,v)

Reconstruction of the original function in the spatial
domain: weighted sum of the basis functions

® The Fourier transform

® The inverse Fourier transform



Computer
Vision

f(x,y)

|F(u,v)| phase F(u,v)

u u

vv



Computer
Vision

Reminders from previous lecture:
Convolution Theorem

C(u, v) = A(u, v) ⇤B(u, v)

c(x, y) = a(x, y)b(x, y)

C(u, v) = A(u, v)B(u, v)

c(x, y) = a(x, y) ⇤ b(x, y)

Space multiplication = frequency convolution

Space convolution = frequency multiplication



Computer
Vision

Reminders from previous lecture:
Modulation Transfer Function

modulation transfer function (MTF)=

O(u, v) = F{o(x, y)}
= F{i(x, y) ⇤ r(x, y)}
= I(u, v)R(u, v)

R(u, v) = F{r(x, y)}
= F{point spread function}

For any Linear Shift Invariant Operator
For any Convolutional Operator

o(x, y) = i(x, y) ⇤ r(x, y)



Computer
Vision Fourier power spectra of images

i(x,y) ɸii = |I(u,v)|2

Amount of signal at each frequency pair

Most nearby object pixels have similar intensity
Most of the signal lies in low frequencies!
High frequency contains the edge information!

Images are mostly composed of homogeneous areas



Computer
Vision Fourier power spectra of noise

n(x,y) ɸnn = |N(u,v)|2

-Pure noise has a uniform power spectra
-Similar components in high and low 
frequencies.



Computer
Vision Fourier power spectra of noisy image

f(x,y) ɸff = |F(u,v)|2

Power spectra is a combination of image and noise



Computer
Vision Signal to Noise Ratio

ɸii(u,v) / ɸnn(u,v)

High SNR

Low SNR

Low SNRLow SNR

Low SNR



Computer
Vision

Only retaining the low frequencies

Low signal/noise ratio at high frequencies Þ
eliminate these

è
Smoother image but we lost details!



Computer
Vision

High frequencies contain noise
but also Edges!

We cannot simply discard the higher frequencies

They are also introduces by edges ; example : 

è
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a. Reminders from previous lecture
b. Fourier power spectra of images

2. Noise suppression
a. Convolutional (Linear) filters
b. Non-linear filters 

3. Image de-blurring
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Computer
Vision

Original Image Noisy
Observation

Noise
Suppression



Computer
Vision Noise suppression

specific methods for specific types of noise

we only consider 2 general options : 

❑1. Convolutional linear filters
low-pass convolution filters

❑ 2. Non-linear filters
edge-preserving filters
■ a. median
■ b. anisotropic diffusion

è



Computer
Vision Low-pass filters: principle

Goal: remove low-signal/noise part of the spectrum

è

Such spectrum filters yield “rippling”
due to ripples of the spatial filter and convolution

Approach 1: Multiply the Fourier domain by a mask



Computer
Vision

è

Illustration of rippling



Computer
Vision

Approach 2: Low-pass convolution filters

generate low-pass filters that do not cause rippling

Idea: Model convolutional filters in the spatial 
domain to approximate low-pass filtering in the
frequency domain

è

Convolutional
filter

Frequency
mask



Computer
Vision

Averaging

è

One of the most straight forward
convolution filters: averaging filters

Separable:
1 1 1

1 1 1

1 1 1
=

1
1
1

1 1 1*

1/9 1/25

1/9 1/3 1/3

o(x, y) = f(x, y) ⇤ i(x, y) = f1(x, y) ⇤ (f2(x, y) ⇤ i(x, y))



Computer
Vision Example for box averaging

Noise is gone. 
Result is blurred!

è



Computer
Vision

MTFs for averaging

3 x 3 (separable!)

(1+2cos(2pu)) (1+2cos(2pv))

5 x 5 (separable)

(1+2cos(2pu)+2cos(4 pu))(1+2cos(2pv)+2cos(4 pv))

not even low-pass!è



Computer
Vision So far

1. Masking frequency domain with window type 
low-pass filter yields sinc-type of spatial filter 
and ripples -> disturbing effect

2. box filters are not exactly low-pass, 
ripples in the frequency domain at higher freq.

no ripples in either domain required!

è



Computer
Vision

MTF : (2+2cos(2 pu))(2+2cos(2 pv))

Solution: Binomial filters

iterative convolutions of (1,1)

only odd filters : (1,2,1), (1,4,6,4,1)

2D :

è

Also separable



Computer
Vision Result of binomial filter

è



Computer
Vision

f :

Limit of iterative binomial filtering

f(x, y) ⇤ f(x, y) ⇤ · · · ⇤ f(x, y) = fn(x, y)

fn(x, y) ! a exp

✓
k(x, y)k2

b

◆
, as n ! 1

Gaussian



Computer
Vision

Gaussian smoothing
Gaussian is limit case of binomial filters

noise gone, no ripples, but still blurred…

Actually linear filters cannot solve this problem
è



Computer
Vision Some implementation issues

separable filters can be implemented efficiently

large filters through multiplication in the
frequency domain

integer mask coefficients increase efficiency
powers of 2 can be generated using shift
operations

è



Computer
Vision Question

High SNR

Low SNR

Low SNRLow SNR

Low SNR

Can a linear-shift-invariant systems do a 
perfect job?
Can they separate edge information from noise 
in the higher frequency components? 



Computer
Vision Noise suppression

specific methods for specific types of noise

we only consider 2 general options : 

❑1. Convolutional linear filters
low-pass convolution filters

❑ 2. Non-linear filters
edge-preserving filters
fighting blurring!

■ a. median
■ b. anisotropic diffusion

è



Computer
Vision

Median filters  : principle

non-linear filter

method :

■ 1. rank-order neighbourhood intensities
■ 2. take middle value

no new grey levels emerge...

è



Computer
Vision Median filters  : odd-man-out

advantage of this type of filter is its 
“odd-man-out” effect

e.g.
1,1,1,7,1,1,1,1

¯

?,1,1,1.1,1,1,?

è



Computer
Vision

Median filters : example
filters have width 5 : 

è



Computer
Vision Median filters  : analysis

median completely discards the spike,
linear filter always responds to all aspects

median filter preserves discontinuities,
linear filter produces rounding-off effects

DON’T become all too optimistic

è



Computer
Vision

Median filter  : results

è

3 x 3 median filter : 

sharpens edges, destroys edge cusps 
and protrusions



Computer
Vision

Median filters : results
Comparison with Gaussian : 

e.g. upper lip smoother, eye better preserved
è



Computer
Vision Example of median

10 times 3 X 3 median

patchy effect
important details lost (e.g. ear-ring)

è



Computer
Vision

Anisotropic diffusion : principle

non-linear filter

method :

■ 1. Gaussian smoothing across 
homogeneous intensity areas

■ 2. No smoothing across edges

è



Computer
Vision The Gaussian filter revisited

The diffusion equation

Initial/Boundary conditions

If 

in1D: 

Solution is a convolution! 

c(~x, t) = c

f(~x, 0) = i(x, y), for ~x 2 ⌦

f(~x, t) = 0, for ~x 2 �(⌦)

@f(~x, t)

@t
= r · (c(~x, t)rf(~x, t))

@f(~x, t)

@t
= c�f(~x, t)

@f(x, t)

@t
= c

@2f(x, t)

@x2

f(~x, t) = f(~x, 0) ⇤ g(~x, t) = i(~x) ⇤ g(~x, t)



Computer
Vision Diffusion as Gaussian lowpass filter

Nonlinear version can change the width of the 
filter locally 

Specifically dependening on the edge 
information through gradients

f(~x, t) = i(~x) ⇤ 1

(2⇡)d/2
p
ct

exp

⇢
�~x · ~x

4ct

�

� =
p
2ctGaussian filter with time dependent 

standard deviation:

c(~x, t) = c(f(~x, t))

c(~x, t) = c(|rf(~x, t)|)



Computer
Vision Selection of diffusion coefficient

or

! controls the contrast to be preserved by smooting
actually edge sharpening happens

c(|rf(~x, t)|) = exp

⇢
� |rf |2

22

�

c(|rf(~x, t)|) = 1

1 +
⇣

|rf |


⌘2



Computer
Vision Dependence on contrast

c

 |rf |



Computer
Vision

Noisy image Ideal image

After 50 iter After 1000 iter



Computer
Vision

Noisy image Ideal image

After 50 iter Isotropic



Computer
Vision
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Computer
Vision

result : diffusion with gradient dependent sign :

Anisotropic diffusionAnisotropic diffusion



Computer
Vision

Anisotropic diffusion: Numerical solutions

@f(~x, t)

@t
= r · (c(~x, t)rf(~x, t))

When c is not a constant solution is found 
through solving the equation 

Partial differential equation

Numerical solutions through discretizing 
the differential operators and integrating

Finite differences in space and 
integration in time



Computer
Vision

Finite difference approximation
of the divergence operator

»Ñ2 = +

=
=

+

1 -2 1
1
-2
1

1
- 4
1
11

1 -1
1
-1

-1 1 -1
1



Computer
Vision

Divergence in the presence of c

+

)( Ñcdiv = 1 -1
1
-1

-1 1 -1
1

1c 2c

3c 4c

Coefficients depend on derivatives of c



Computer
Vision

Anisotropic diffusion: Output

End state is 
homogeneous



Computer
Vision

Restraining the diffusion

adding restraining force : 

@f

@t
= � · (c(|rf |)rf)� 1

�2
(f � i)



Computer
Vision

Noisy image Binomial 7x7

Median 5x5 Aniso Diff. wr



Computer
Vision Overview

1. Preliminaries
a. Reminders from previous course
b. Fourier power spectra of images

2. Noise suppression
a. Convolutional (Linear) filters
b. Non-linear filters 

3. Image de-blurring
a. Unsharp masking
b. Inverse Filtering
c. Wiener Filters

4. Contrast enhancement
a. Histogram Equalization



Computer
Vision

Original Image
What we want

Blurred image
What we observe

Deblurring



Computer
Vision Unsharp masking

simple but effective method

image independent

linear

used e.g. in photocopiers and scanners

è



Computer
Vision Unsharp masking  : sketch

è

red = 
original

black = 
smoothed

orginal –
smooth

original +
difference



Computer
Vision

Unsharp masking  : principle

Interpret blurred image as snapshot of diffusion 
process

)( 2 fc
t
f

Ñ=
¶
¶

In a first order approximation, we can write

t
t
fyxftyxf
¶
¶

+» )0,,(),,(
Hence,

fcttyxft
t
ftyxfyxf 2),,(),,()0,,( Ñ-=
¶
¶

-»

Unsharp masking produces o from i

ikio 2Ñ-=
with k a well-chosen constant

è



Computer
Vision

Need to estimate 
DOG (Difference-of-Gaussians) approximation 

for Laplacian : 

è

Our 1D example: Convolution 
mask in 2D:

r2i(x, y)



Computer
Vision Unsharp masking: Analysis

è

ikio 2Ñ-=

The edge profile becomes steeper, giving a 
sharper impression

Under-and overshoots flanking the edge further 
increase the impression of image sharpness



Computer
Vision Unsharp masking  : images

è



Computer
Vision Inverse filtering

Relies on system view of image processing

Frequency domain technique

Defined through Modulation Transfer Function

Links to theoretically optimal approaches

è



Computer
Vision A system view on image restoration

System: O
(b(x,y))

Input

i(x,y)

Output

f(x,y)

i,b known f=?: simulation, smoothing
i,f known b=?: system identification
b,f known i=?: image restoration

for de-blurring: b is the blurring filter



Computer
Vision Inverse filtering  : principle

Frequency domain technique

suppose you know the MTF B(u,v) of the 
blurring filter 

to undo its effect new filter with MTF B’ (u,v)
such that

è

f(x, y) = b(x, y) ⇤ i(x, y)
F (u, v) = B(u, v)I(u, v)

B0(u, v)B(u, v) = 1

I(u, v) = B0(u, v)F (u, v)



Computer
Vision Inverse filtering  : formal derivation

è

For additive noise after filtering

Result of inverse filter

B0(u, v) = 1/B(u, v)

F (u, v) = B(u, v)I(u, v) +N(u, v)

F (u, v)B0(u, v) = I(u, v) +N(u, v)/B(u, v)



Computer
Vision

Problems of inverse filtering

è

• Frequencies with B (u,v) = 0
Information fully lost during filtering
Cannot be recovered
Inverse filter is ill-defined

• Also problem with noise added after filtering 
B(u,v) is low -> 1/B(u,v) is high, 
VERY strong noise amplification

F (u, v) = B(u, v)I(u, v) +N(u, v)

F (u, v)B0(u, v) = I(u, v) +N(u, v)/B(u, v)



Computer
Vision

*

1D Example

xx

x



Computer
Vision

Restoration of noisy signals

x x

x x



Computer
Vision

Inverse filtering  : 2D example

we will apply the method to a Gaussian
smoothed example (s = 16 pixels)

è



Computer
Vision

Inverse filtering  : 2D example

Handwaving method 1 : 

CvuB
vuB

+
=¢

),(
1),(

» ideal MTF 1/B (u,v) for large B 
tends to 1/C when B (u,v) → 0

è noise leads to spurious high frequencies



Computer
Vision The Wiener Filter

Looking for the optimal filter to do the deblurring

Take into account the noise to avoid amplification

Optimization formulation

Filter is given analytically in the Fourier Domain

è



Computer
Vision

Cross-correlation

Signals a(x,y), b(x,y), cross-correlation

Difference with convolution: no mirroring
Auto-correlation: faa(x,y): symmetric, global maximum at (0,0)

Power spectrum and auto-correlation are linked!

Wiener-Kintschin Theorem

�ab =

Z 1

�1

Z 1

�1
a(⇠ � x, ⌘ � y)b(⇠, ⌘)d⇠d⌘

Correlation between image a and b at different shifts

F(�aa) = �aa(u, v) = |A(u, v)|2 = A⇤(u, v)A(u, v)



Computer
Vision

The Wiener filter: optimal filter

Looking for the output (o) being most similar to the 
desired signal (d, usually the original input i)
This means:

Can be solved analytically, the resulting filter in the
frequency domain is

where is the signal-to-noise ratio (SNR)

j = h ⇤ i+ n

o = h0 ⇤ j

E =

Z 1

�1

Z 1

�1
(o(x, y)� d(x, y))2 dxdy

�ii

�nn

Wf(H) = H
0(u, v) =

H(u, v)�ii

H⇤(u, v)H(u, v)�ii + �nn



Computer
Vision

Behaviour of the Wiener filter

è

Wf(H) = H
0(u, v) =

H(u, v)

H⇤(u, v)H(u, v) + 1/SNR

SNR =
�ii

�nn

• üH(u, v) = 0 =) Wf(H) = 0

SNR ! 1 =) 1/SNR ! 0
• ü

Wf(H) ! 1

H

SNR ! 0 =) 1/SNR ! 1

Wf(H) ! 0
• ü



Computer
Vision

Wiener filter: Noiseless reconstruction

è

Medium confidence

High confidence

x

x



Computer
Vision

Wiener filter: Noisy reconstruction

è

Medium confidence
Correct SNR

High confidenceLow confidence

x

x x x



Computer
Vision

Wiener filtering  : example

è

spurious high freq. eliminated, conservative



Computer
Vision

Wiener filter: problems of application

è

• Conservative
if SNR is low tends to become low-pass
blurring instead of sharpening

• SNR =  Φii(u,v)/Φnn(u,v) depends on I(u,v)
strictly speaking is unknown
power spectrum is not very characteristic

• H(u,v) must be known very precisely

is the effective filter (should be 1)Ef = Wf(H)H

O(u, v) = Wf(H)(H(u, v)I(u, v))

= (Wf(H)H(u, v))I(u, v)



Computer
Vision

Wiener filter: the effective filter

è
Low SNR Medium SNR High SNR

Wiener filter

Effective filter

u u u

u u u



Computer
Vision

Wiener filter: Knowledge of PSF

è

Signal blurred with rect(x/16)

Deblurring by Wiener filter using

rect(x/16)rect(x/16.5) rect(x/15.5)

x

x x x



Computer
Vision

Wiener filter: Knowledge of PSF

è

Blurring kernel 
rect(x/16)

Effective Filter
rect(x/16)*Wf(x/16)    rect(x/16) *Wf(x/16.5)

Filter kernels overlaid

u
u

u

u



Computer
Vision Overview

1. Preliminaries
a. Reminders from previous course
b. Fourier power spectra of images

2. Noise suppression
a. Convolutional (Linear) filters
b. Non-linear filters 

3. Image de-blurring
a. Unsharp masking
b. Inverse Filtering
c. Wiener Filters

4. Contrast enhancement
a. Histogram Equalization



Computer
Vision

Original Image Observation
with

Bad Contrast

Contrast 
Enhancement



Computer
Vision Contrast enhancement

Use 1 : compensating under-, overexposure

Use 2 : spending intensity range on interesting
part of the image

We’ll study histogram equalisation

è



Computer
Vision

Intensity distribution

Histogram

Cumulative histogram



Computer
Vision

Slide 91

Intensity mappings

Generic transformation function
Old intensity

N
ew

 in
te

ns
ity

Power law transformation
Inew = Iold

γ

Usually monotonic mappings required

Excite Summer School Zurich
Image Processing for life scientists
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Vision

Slide 92

Gamma correction

Original

γ = 2

γ = 0.5
Excite Summer School Zurich
Image Processing for life scientists



Computer
Vision HISTOGRAM EQUALISATION 

WHAT : create a flat histogram

HOW : apply an appropriate intensity map
depending on the image content

method will be generally applicable

è

Flat histogram

Cumulative 
histogram



Computer
Vision Histogram equalisation  : example

è



Computer
Vision Histogram equalisation  : example
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Vision

Histogram equalisation : principle

Redistribute the intensities, 1-to-several (1-to-1 in 
the continuous case) and keeping their relative order, 
as to use them more evenly

Ideally, obtain a constant, flat histogram

0 0

maxi maxi

è



Computer
Vision

This mapping is easy to find:
It corresponds to the cumulative intensity probability,
i.e. by integrating the histogram from the left

0 0

Histogram equalisation : algorithm

è



Computer
Vision

This mapping is easy to find:
It corresponds to the cumulative intensity probability,
i.e. by integrating the histogram from the left

0

Histogram equalisation : algorithm

è



Computer
Vision Histogram equalisation  : algorithm

suppose continuous probability density

cumulative probability distribution : 

)(ip

ò=
i

diipiP
0

**)()(

distribution as our map :)(iT

ò==¢
i

diipiiTi
0max **)()(

!!!))((
maxmax iip

p
id
dipp 111

==
¢

=¢

è



Computer
Vision Histogram equalisation : sketch

C’ C
1

0

intensity intensity

ii’ maximaxi

Cumulative probability

è

actual cum.
probability

target cum.
probability

ò===
i

diipiiCiiTi
0maxmax **)()()('
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Vision

Histogram equalisation  : result

intensity map : 

original and flattened 
histograms : 

è



Computer
Vision

Histogram equalisation  : analysis

Intervals where many pixels are packed together
are expanded

è

Intervals with only few corresponding pixels are 
compressed



Computer
Vision

Histogram equalisation  : analysis

… BUT we don’t obtain a flat histogram

This is due to the discrete nature of the 
input histogram and the equalisation procedure

Jumps in the discretised cumulative probability
distribution lead to gaps in the histogram

è



Computer
Vision Histogram equalisation  : example revisited

è



Computer
Vision

Histogram equalisation  : generalisation

Find a map                     that yields probability
density 

)(iTi =¢
p¢

ò ò
¢

==¢=¢¢
i i

iCdvvpdwwpiC
0 0

).()()()(

with            and           the prescribed and 
original cumulative probability distributions

)(iC ¢¢ )(iC

Thus

))((1 iCCi -¢=¢

è



Computer
Vision Histogram equalisation  : sketch

è

))((1 iCCi -¢=¢


