Acquisition of Images

Computer Vision

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination

2. cameras

Sensor Array

Light Source
Image Plane

Computer Vision

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination

2. cameras

Image Plane

Sensor Array

Computer Vision
illumination

Computer Vision

ACQUIS.
illumination cameras

Illumination

Well-designed illumination often is key in visual inspection

The light was good, but

Illumination techniques

Simplify the image processing by controlling the environment

An overview of illumination techniques:

1. back-lighting
2. directional-lighting
3. diffuse-lighting
4. polarized-lighting
5. coloured-lighting
6. structured-lighting
7. stroboscopic lighting

Back-lighting

ACQUIS.

illumination cameras
lamps placed behind a transmitting diffuser plate, light source behind the object
generates high-contrast silhouette images, easy to handle with binary vision
often used in inspection

Computer Vision

Example backlighting

ACQUIS.
illumination cameras

ACQUIS.

illumination cameras

Directional and diffuse lighting

Directional-lighting

- generate sharp shadows
- generation of specular reflection (e.g. crack detection)
- shadows and shading yield information about shape

Diffuse-lighting

- illuminates uniformly from all directions
- prevents sharp shadows and large intensity variations over glossy surfaces:
- all directions contribute extra diffuse reflection, but contributions to the specular peak arise from directions close to the mirror one only

Computer Vision

Crack detection

ACQUIS.
illumination cameras

Computer Vision

ACQUIS.
illumination cameras

Example directional lighting

Computer
Vision

Example diffuse lighting

ACQUIS.
illumination cameras

ACQUIS. 2 uses:

illumination cameras

Polarized lighting

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals, e.g. when inspecting electrical circuits

Computer Vision

Polarized lighting

direction of propagation

- Light as electro-magnetic wave.
- Polarization direction is the one of the E-wave.
- Normally, the light is composed of many waves with different polarizations

Computer

 Vision

Computer Vision

Basic models of reflection

- Purely diffused
- Specular • Mixed reflection reflection
- Lambertian

Computer Vision

Polarised lighting

polarizer/analyzer configurations

law of Malus:

$$
I(\theta)=I(0) \cos ^{2} \theta
$$

Computer Vision

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

ACQUIS.
illumination cameras

Polarized lighting

specular reflection keeps polarisation : diffuse reflection depolarises

suppression of specular reflection :

polarizer/analyzer crossed
prevents the large dynamic range caused by glare

Computer Vision

Example pol. lighting (pol./an.crossed)

ACQUIS.

illumination cameras

Computer Vision

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

Reflection : dielectric

Polarizer at Brewster angle

Computer Vision

Reflection : conductor

ACQUIS.

illumination cameras

strong reflectors more or less preserve polarization

Polarised lighting

distinction between specular reflection from dielectrics and metals; works under the Brewster angle for the dielectric dielectric has no parallel comp. ; metal does suppression of specular reflection from dielectrics:

polarizer/analyzer aligned distinguished metals and dielectrics

Computer Vision

ACQUIS.
illumination cameras

Example pol. lighting (pol./an. aligned)

ACQUIS.

illumination cameras

Coloured lighting

highlight regions of a similar colour
with band-pass filter: only light from projected pattern (e.g. monochromatic light from a laser)
differentiation between specular and diffuse reflection
comparing colours \Rightarrow same spectral composition of sources!
spectral sensitivity function of the sensors!

Computer Vision

ACQUIS.
illumination cameras

Example coloured lighting

ACQUIS.
illumination cameras

Structured and stroboscopic lighting

 spatially or temporally modulated light pattern
Structured lighting

e.g. : 3D shape : objects distort the projected pattern
(more on this later)

Stroboscopic lighting

high intensity light flash
to eliminate motion blur

Computer
Vision

ACQUIS.
illumination cameras

Stroboscopic lighting

Computer Vision

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination

2. cameras

Computer

Vision

cameras

Computer

Vision

camera models

Computer Vision

Optics for image formation

the pinhole model :

Computer Vision

Optics for image formation

the pinhole model :

hence the name:
CAMERA obscura

Computer Vision

Optics for image formation

the pinhole model :

(m = linear magnification)

Computer
Vision

Camera obscura + lens

Computer Vision

Optics for image formation

the pinhole model :

(m = linear magnification)

Computer Vision

The thin-lens equation

lens to capture enough light :

assuming
\square spherical lens surfaces
\square incoming light \pm parallel to axis
\square thickness << radii
\square same refractive index on both sides

Computer Vision

The thin-lens equation

lens to capture enough light :

assuming
\square spherical lens surfaces
\square incoming light \pm parallel to axis
thickness << radii

- same refractive index on both sides

Computer Vision

The depth-of-field

Only reasonable sharpness in Z-interval

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

decreases with d, increases with Z_{0}
strike a balance between incoming light (d) and large depth-of-field (usable depth range)

Computer Vision

The depth-of-field

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

Similar expression for $Z_{O}^{+}-Z_{O}$

Computer Vision

The depth-of-field

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

Ex 1: microscopes -> small DoF
Ex 2: special effects -> flood miniature scene with light

Deviations from the lens model

3 assumptions :

1. all rays from a point are focused onto 1 image point
2. all image points in a single plane
3. magnification is constant
deviations from this ideal are aberrations

Aberrations

2 types:

1. geometrical: visible as image distortions or degradation like blurring
2. chromatic: visible as different behavior for different wavelengths (e.g. colors)
geometrical : small for paraxial rays (rays close to the optical axis)
chromatic : refractive index function of wavelength (Snell's law !!)

Most common way to reduce severity: Composite systems with multiple lenses.

Geometrical aberrations

\square spherical aberration
\square astigmatism

the most important type

\square radial distortion
\square coma

Spherical aberration

rays parallel to the axis do not converge
outer portions of the lens yield smaller focal lengths

Computer Vision

Spherical aberration

Computer Vision

Radial distortion

different magnification for different angles of inclination

barrel

none

pincushion

Computer Vision

Radial distortion

different magnification for different angles of inclination

barrel

none

pincushion

- The result is lines become curves.
- Curvature increases as you move away from the center of distortion.
- Models assume this is the image center. And there is a multiplicative factor on the pixel location depending on the pixels' distance r to the center

$$
d=\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}+\ldots\right)
$$

- Even factors because effects are symmetric.

This aberration type can be corrected by software if the parameters $\left(\kappa_{1}, \kappa_{2}, \ldots\right)$ are known

Some methods do this by looking how straight lines curve instead of being straight

Computer Vision

Chromatic aberration

rays of different wavelengths focused in different planes

cannot be removed completely
but achromatization can be achieved at some well chosen wavelength pair, by combining lenses made of different glasses
sometimes achromatization
 is achieved for more than 2 wavelengths

device technologies: brief overview

Computer
Vision

Cameras

we consider 2 types:

1. $C C D$

2. CMOS

Computer Vision

Cameras

CCD photon to electron CMOS

CCD = Charge-coupled device
CMOS = Complementary Metal Oxide Semiconductor

Computer
Vision

CCD Interline camera

Computer Vision

Same sensor elements as CCD

Each photo sensor has its own amplifier (Active Pixel Sensor)
More noise (reduced by subtracting ‘black’ image)
Lower sensitivity (lower fill rate)
Uses standard CMOS technology
Allows to put other components on chip
‘Smart' pixels

Computer Vision

CMOS

Resolution trend in mobile phones

Volume and revenue opportunity for high resolution sensors

[^0]
CCD vs. CMOS

- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

2006 was year of sales cross-over

CCD vs. CMOS

- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

In 2015 Sony said to stop CCD chip production

Color cameras

- We consider 3 concepts:

1. Prism (with 3 sensors)
2. Filter mosaic
3. Filter wheel

Prism color camera

Separate light in 3 beams using dichroic prism Requires 3 sensors \& precise alignment Good color separation

Computer Vision

Prism color camera

Filter mosaic

Coat filter directly on sensor

Bayer filter
 Demosaicing / Interpolation

(obtain full colour \& full resolution image)

CCD ARRAY WITH
BAYER PATTERN SHOWING LOCATION

OF WHITE/BLACK
TRANSITION

Computer Vision

Filter mosaic

Sensor Architecture

Color filters lower the effective resolution,
Fuji Corporation hence microlenses often added to gain more light on the small pixels

Filter wheel

Rotate multiple filters in front of lens Allows more than 3 colour bands

Only suitable for static scenes

Prism vs. Mosaic vs. Wheel

approach	Prism
\# sensors	3
Resolution	High
Cost	High
Framerate	High
Artefacts	Low
Bands	3

High-end cameras

Mosaic
1
Average
Low
High
Aliasing
3

Low-end
cameras

Wheel
1
Good
Average
Low
Motion
3 or more

Scientific applications

Vision

geometric models

Computer
Vision

Geometric camera model

perspective projection

(Man Drawing a Lute, woodcut, 1525, Albrecht Dürer)

Computer
Vision

Models for camera projection

the pinhole model revisited :

center of the lens = center of projection
notice the virtual image plane
this is called perspective projection

Computer Vision

Models for camera projection

We had the virtual plane also in the original reference sketch:

Computer Vision

Perspective projection

\square origin lies at the center of projection / center of the lens
\square the Z_{c} axis coincides with the optical axis
$\square X_{c}$-axis || to image rows, Y_{c}-axis || to columns

Computer Vision

Perspective projection

$$
u=f \frac{X}{Z} \quad v=f \frac{Y}{Z}
$$

Computer Vision

Pseudo-orthographic projection

$$
u=f \frac{X}{Z} \quad v=f \frac{Y}{Z}
$$

If Z is constant $\Rightarrow x=k X$ and $y=k Y$, where $k=f / Z$
i.e. orthographic projection ($k=1$) + a scaling

Also called a pseudo-perspective projection
Good approximation if $f / Z \approx$ constant, i.e. if objects are small compared to their distance from the camera

Computer Vision

Pictoral comparison

Pseudo orthographic

Perspective

Computer Vision

Projection matrices

the perspective projection model is incomplete : what if :

1. 3 D coordinates are specified in a world coordinate frame
2. Image coordinates are expressed as row and column numbers

We will not consider additional refinements, such as radial distortions,...

Computer Vision $$
\begin{aligned} & \text { Projection } \\ & \text { matrices } \\ & v=f \frac{r_{21}\left(X-C_{1}\right)+r_{22}\left(Y-C_{2}\right)+r_{23}\left(Z-C_{3}\right)}{r_{31}\left(X-C_{1}\right)+r_{32}\left(Y-C_{2}\right)+r_{33}\left(Z-C_{3}\right)} \end{aligned}
$$
 Projection
 Projection matrices

 matrices}
Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

$\rightarrow\left(x 0, y_{0}\right)$ the pixel coordinates of the principal point
$\rightarrow k_{x}$ the number of pixels per unit length horizontally
$\rightarrow k_{y}$ the number of pixels per unit length vertically
$\rightarrow s$ indicates the skew, i.e. how much it deviates from a rectangle, typically $s=0$

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB1: often only integer pixel coordinates matter

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB2: k_{y} / k_{x} is called the aspect ratio Deviations indicate non-square pixels

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB3: $k x, k y, s, x_{0}$ and y_{0} are called internal camera parameters

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB4: when they are known, the camera is internally calibrated

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB5 : vector C and matrix $\mathrm{R} \in \mathrm{SO}$ (3) are the external camera parameters

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB6: when these are known, the camera is externally calibrated

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB7 : fully calibrated means internally and externally calibrated

Homogeneous coordinates

Often used to linearize non-linear relations

$$
\left.\begin{array}{ll}
\text { 2D } & \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
\text { 3D } \quad\binom{x / z}{y / z} \\
Y \\
Z \\
W
\end{array}\right) \rightarrow\left(\begin{array}{l}
X / W \\
Y / W \\
Z / W
\end{array}\right), ~ \$
$$

Homogeneous coordinates are only defined up to a factor

Projection matrices

$$
\begin{aligned}
& u=f \frac{r_{11}\left(X-C_{1}\right)+r_{12}\left(Y-C_{2}\right)+r_{13}\left(Z-C_{3}\right)}{r_{31}\left(X-C_{1}\right)+r_{32}\left(Y-C_{2}\right)+r_{33}\left(Z-C_{3}\right)} \\
& v=f \frac{r_{21}\left(X-C_{1}\right)+r_{22}\left(Y-C_{2}\right)+r_{23}\left(Z-C_{3}\right)}{r_{31}\left(X-C_{1}\right)+r_{32}\left(Y-C_{2}\right)+r_{33}\left(Z-C_{3}\right)}
\end{aligned}
$$

Exploiting homogeneous coordinates:

$$
\tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{ccc}
f r_{11} & f r_{12} & f r_{13} \\
f r_{21} & f r_{22} & f r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{l}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right)
$$

Projection matrices

$$
\left\{\begin{array}{l}
x=k_{x} u+s v+x_{0} \\
y=\quad k_{y} v+y_{0}
\end{array}\right.
$$

Exploiting homogeneous coordinates:

$$
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right) \tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
$$

Computer Vision

Projection matrices

Thus far, we have :

$$
\begin{gathered}
\tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{ccc}
f r_{11} & f r_{12} & f r_{13} \\
f r_{21} & f r_{22} & f r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{l}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right) \\
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right) \tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
\end{gathered}
$$

Computer Vision

Projection matrices

Concatenating the results :
$\tau\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{ccc}k_{x} & s & x_{0} \\ 0 & k_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}f r_{11} & f r_{12} & f & r_{13} \\ f r_{21} & f & r_{22} & f \\ r_{23} \\ r_{31} & & r_{32} & \\ r_{33}\end{array}\right)\left(\begin{array}{l}X-C_{1} \\ Y-C_{2} \\ Z-C_{3}\end{array}\right)$
Or, equivalently :
$\tau\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{ccc}k_{x} & s & x_{0} \\ 0 & k_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)\left(\begin{array}{l}X-C_{1} \\ Y-C_{2} \\ Z-C_{3}\end{array}\right)$

Projection matrices

Re-combining matrices in the concatenation :

$$
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{l}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right)
$$

yields the calibration matrix K :
$K=\left(\begin{array}{lll}k_{x} & s & x_{0} \\ 0 & k_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}f k_{x} f s & x_{0} \\ 0 & f k_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right)$

Computer Vision

Projection matrices

We define

$$
p=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) ; \quad P=\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right), \quad \widetilde{P}=\left(\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

yielding
$\rho p=K R^{t}(P-C)$ for some non-zero $\rho \in \mathbb{R}$
or, $\quad \rho p=K\left(R^{t} \mid-R^{t} C\right) \widetilde{P}$
or, $\quad \rho p=(M \mid t) \widetilde{P}$ with rank $M=3$

Computer Vision

From object radiance to pixel grey levels

After the geometric camera model...
... a photomelrle camera model

2 steps:

1. from object radiance to image irradiance
2. from image irradiance to pixel grey level

Image irradiance and object radiance

we look at the irradiance that an object patch will cause in the image
assumptions :
radiance R assumed known and object at large distance compared to the focal length

Is image irradiance directly related to the radiance of the image patch?

Computer Vision

The viewing conditions

$$
I=R \frac{A_{l}}{f^{2}} \cos ^{4} \alpha
$$

the $\cos ^{4}$ law

Computer
Vision

The $\cos ^{4}$ law cont' d

Especially strong effects for wide-angle and
 fisheye lenses

From irradiance to gray levels

$$
f=\mathcal{E}^{\gamma}+\boldsymbol{d}
$$

From irradiance to gray levels

[^0]: Source: TSR, CCD/CMOS Area Image Sensor Market Analysis, dated June 2011

