Acquisition of Images

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

- 1. illumination
- 2. cameras

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination

2. cameras

illumination

ACQUIS.

illumination cameras

Illumination

Well-designed illumination often is key in visual inspection

The light was good, but the hot wax was a problem...

ACQUIS.

illumination cameras

Illumination techniques

Simplify the image processing by controlling the environment

An overview of illumination techniques:

- 1. back-lighting
- 2. directional-lighting
- 3. diffuse-lighting
- 4. polarized-lighting
- 5. coloured-lighting
- 6. structured-lighting
- 7. stroboscopic lighting

ACQUIS.

illumination cameras

Back-lighting

lamps placed behind a transmitting diffuser plate, light source behind the object

generates high-contrast silhouette images, easy to handle with *binary vision*

often used in inspection

ACQUIS.

illumination cameras

Example backlighting

ACQUIS.

illumination cameras

Directional and diffuse lighting

Directional-lighting

- generate sharp shadows
- generation of specular reflection (e.g. crack detection)
- shadows and shading yield information about shape

Diffuse-lighting

- illuminates uniformly from all directions
- prevents sharp shadows and large intensity variations over glossy surfaces:
- all directions contribute extra diffuse reflection, but contributions to the specular peak arise from directions close to the mirror one only

ACQUIS.

illumination cameras

Crack detection

ACQUIS.

illumination cameras

Example directional lighting

ACQUIS.

illumination cameras

Example diffuse lighting

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections

2. to improve contrasts between dielectrics and metals, e.g. when inspecting electrical circuits

Polarized lighting

- Light as electro-magnetic wave.
- Polarization direction is the one of the E-wave.
- Normally, the light is composed of many waves with different polarizations

Basic models of reflection

- Purely • diffused
- Specular Mixed reflection
- reflection

Lambertian •

ACQUIS.

illumination cameras

Polarised lighting

polarizer/analyzer configurations

law of Malus :

 $I(\theta) = I(0)\cos^2\theta$

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections

2. to improve contrasts between dielectrics and metals

ACQUIS.

illumination cameras

Polarized lighting

specular reflection keeps polarisation : diffuse reflection depolarises

suppression of specular reflection :

polarizer/analyzer crossed prevents the large dynamic range caused by glare

→

Computer Vision

ACQUIS.

illumination cameras

Example pol. lighting (pol./an.crossed)

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections

to improve contrasts between dielectrics and metals

ACQUIS.

illumination cameras

Reflection : dielectric

Polarizer at Brewster angle

ACQUIS.

illumination cameras

Reflection : conductor

strong reflectors more or less preserve polarization

ACQUIS.

illumination cameras

Polarised lighting

distinction between specular reflection from dielectrics and metals; works under the Brewster angle for the dielectric dielectric has no parallel comp. ; metal does

suppression of specular reflection from dielectrics :

polarizer/analyzer aligned distinguished metals and dielectrics

ACQUIS.

illumination cameras

Example pol. lighting (pol./an. aligned)

ACQUIS.

illumination cameras **Coloured lighting**

highlight regions of a similar colour

with band-pass filter: only light from projected pattern (e.g. monochromatic light from a laser)

differentiation between specular and diffuse reflection

comparing colours ⇒ same spectral composition of sources!

spectral sensitivity function of the sensors!

ACQUIS.

illumination cameras

Example coloured lighting

ACQUIS.

illumination cameras

Structured and stroboscopic lighting

spatially or temporally modulated light pattern

Structured lighting

e.g. : 3D shape : objects distort the projected pattern (more on this later)

Stroboscopic lighting

high intensity light flash

to eliminate motion blur

ACQUIS.

illumination cameras

Stroboscopic lighting

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination
2. cameras

cameras

camera models

Optics for image formation

the pinhole model :

Optics for image formation

the pinhole model :

hence the name: CAMERA obscura

Optics for image formation

the pinhole model :

(*m* = linear magnification)

Camera obscura + lens

Optics for image formation

the pinhole model :

(*m* = linear magnification)

The thin-lens equation

lens to capture enough light :

assuming

- spherical lens surfaces
- \Box incoming light \pm parallel to axis
- thickness << radii</p>
- same refractive index on both sides

The thin-lens equation

The depth-of-field

Only reasonable sharpness in Z-interval

decreases with d, increases with Z_0 strike a balance between incoming light (d) and large depth-of-field (usable depth range)

The depth-of-field

Similar expression for Z_O^+ - Z_O

The depth-of-field

Ex 1: microscopes -> small DoF

Ex 2: special effects -> flood miniature scene with light

Deviations from the lens model

3 assumptions :

- 1. all rays from a point are focused onto 1 image point
- 2. all image points in a single plane
- 3. magnification is constant

deviations from this ideal are *aberrations*

Aberrations

2 types :

1. geometrical: visible as image distortions or degradation like blurring

2. chromatic: visible as different behavior for different wavelengths (e.g. colors)

geometrical : small for paraxial rays (rays close to the optical axis)

chromatic : refractive index function of wavelength (Snell's law !!)

Most common way to reduce severity: Composite systems with multiple lenses.

Geometrical aberrations

spherical aberration

astigmatism
 the most important type
 radial distortion

🖵 coma

Spherical aberration

rays parallel to the axis do not converge

outer portions of the lens yield smaller focal lengths

Spherical aberration

Radial distortion

different magnification for different angles of inclination

barrel

none

pincushion

Radial distortion

different magnification for different angles of inclination

barrel

none

pincushion

- The result is lines become curves.
- Curvature increases as you move away from the center of distortion.
- Models assume this is the image center. And there is a multiplicative factor on the pixel location depending on the pixels' distance r to the center

$$d = (1 + \kappa_1 r^2 + \kappa_2 r^4 + \ldots)$$

• Even factors because effects are symmetric.

Radial distortion

This aberration type can be corrected by software if the parameters (κ_1 , κ_2 , ...) are known

Radial distortion

Some methods do this by looking how straight lines curve instead of being straight

Chromatic aberration

rays of different wavelengths focused in different planes

The image is blurred and appears colored at the fringe.

Achromatic Lens

cannot be removed completely but *achromatization* can be achieved at some well chosen wavelength pair, by combining lenses made of different glasses

sometimes *achromatization*Ach is achieved for more than 2 wavelengths

Computer

Vision

device technologies: brief overview

Cameras

we consider 2 types :

1. CCD

2. CMOS

Cameras

CCD = Charge-coupled device CMOS = Complementary Metal Oxide Semiconductor

CCD Interline camera

CMOS

Same sensor elements as CCD

Each photo sensor has its own amplifier (Active Pixel Sensor)

More noise (reduced by subtracting 'black' image)

Lower sensitivity (lower fill rate)

Uses standard CMOS technology

Allows to put other components on chip

'Smart' pixels

CMOS

Resolution trend in mobile phones Volume and revenue opportunity for high resolution sensors

CCD vs. CMOS

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout

- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

2006 was year of sales cross-over

CCD vs. CMOS

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout

- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

In 2015 Sony said to stop CCD chip production

Color cameras

• We consider 3 concepts:

- 1. Prism (with 3 sensors)
- 2. Filter mosaic
- 3. Filter wheel

Prism color camera

Separate light in 3 beams using dichroic prism Requires 3 sensors & precise alignment Good color separation

Prism color camera

Filter mosaic

Coat filter directly on sensor

Bayer filter Demosaicing / Interpolation

(obtain full colour & full resolution image)

Filter mosaic Sensor Architecture

Fuji Corporation

Sensor

Color filters lower the effective resolution, hence microlenses often added to gain more light on the small pixels

Filter wheel

Rotate multiple filters in front of lens Allows more than 3 colour bands

Only suitable for static scenes

Prism vs. Mosaic vs. Wheel

<u>approach</u>	<u>Prism</u>	Mosaic	<u>Wheel</u>
# sensors	3	1	1
Resolution	High	Average	Good
Cost	High	Low	Average
Framerate	High	High	Low
Artefacts	Low	Aliasing	Motion
Bands	3	3	3 or more
	High-end	Low-end	Scientific
	cameras	cameras	applications

geometric models

Geometric camera model

perspective projection

(Man Drawing a Lute, woodcut, 1525, Albrecht Dürer)

Models for camera projection

the pinhole model revisited :

center of the lens = center of projection

notice the virtual image plane

this is called *perspective* projection

Models for camera projection

We had the virtual plane also in the original reference sketch:

Perspective projection

origin lies at the center of projection / center of the lens
 the *Z_c* axis coincides with the optical axis
 X_c-axis || to image rows, *Y_c*-axis || to columns
Perspective projection

Pseudo-orthographic projection

$$u = f \frac{X}{Z} \qquad \qquad v = f \frac{Y}{Z}$$

If Z is constant $\Rightarrow x = kX$ and y = kY, where k = f/Z

i.e. *orthographic* projection (k=1) + a scaling

Also called a pseudo-perspective projection

Good approximation if $f/Z \approx$ constant, i.e. if objects are small compared to their distance from the camera

Pictoral comparison

Pseudo orthographic

Perspective

Projection matrices

the perspective projection model is incomplete : what if :

1. 3D coordinates are specified in a *world coordinate frame*

2. Image coordinates are expressed as *row and column numbers*

We will not consider additional refinements, such as radial distortions,...

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

	012	<u> </u>		
У	0 1 2			
	3		$\int x = k_x u$	$+ s v + x_0$
			y =	$k_y v + y_0$
ļ	n		with :	

 \rightarrow (x0, y0) the pixel coordinates of the principal point

- $\rightarrow kx$ the number of pixels per unit length horizontally
- $\rightarrow k_y$ the number of pixels per unit length vertically

 \rightarrow *s* indicates the skew, i.e. how much it deviates from a rectangle, typically *s* = 0

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB1: often only integer pixel coordinates matter

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB2 : k_y/k_x is called the *aspect ratio* Deviations indicate non-square pixels

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB3 : *kx*,*ky*,*s*,*x0* and *y0* are called *internal camera parameters*

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB4 : when they are known, the camera is *internally calibrated*

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB5 : vector C and matrix $R \in SO$ (3) are the *external camera parameters*

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB6 : when these are known, the camera is *externally calibrated*

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB7 : *fully calibrated* means internally and externally calibrated

Homogeneous coordinates

Often used to linearize non-linear relations

 $2\mathsf{D} \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x/z \\ y/z \end{pmatrix}$ $3D \qquad \begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix} \rightarrow \begin{pmatrix} X/W \\ Y/W \\ Z/W \end{pmatrix}$

Homogeneous coordinates are only defined up to a factor

Projection matrices

$$u = f \frac{r_{11}(X - C_1) + r_{12}(Y - C_2) + r_{13}(Z - C_3)}{r_{31}(X - C_1) + r_{32}(Y - C_2) + r_{33}(Z - C_3)}$$
$$v = f \frac{r_{21}(X - C_1) + r_{22}(Y - C_2) + r_{23}(Z - C_3)}{r_{31}(X - C_1) + r_{32}(Y - C_2) + r_{33}(Z - C_3)}$$

Exploiting homogeneous coordinates :

$$\tau \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f r_{11} & f r_{12} & f r_{13} \\ f r_{21} & f r_{22} & f r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

Projection matrices

$$\begin{cases} x = k_x u + s v + x_0 \\ y = k_y v + y_0 \end{cases}$$

Exploiting homogeneous coordinates :

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \tau \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

Projection matrices

Thus far, we have :

$$\tau \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f r_{11} & f r_{12} & f r_{13} \\ f r_{21} & f r_{22} & f r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \tau \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

→

Projection matrices

Concatenating the results :

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f & r_{11} & f & r_{12} & f & r_{13} \\ f & r_{21} & f & r_{22} & f & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

Or, equivalently :

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

Projection matrices

Re-combining matrices in the concatenation :

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

yields the calibration matrix *K*:

$$K = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} f & k_x & f & s & x_0 \\ 0 & f & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix}$$

Projection matrices

We define
$$p = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}; P = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}, \widetilde{P} = \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

yielding

$$\rho p = KR^t(P - C)$$
 for some non-zero $\rho \in \mathbb{R}$

or,
$$\rho p = K(R^t \mid -R^t C)\widetilde{P}$$

or, $\rho p = (M \mid t)\widetilde{P}$ with rank $M = 3$

From object radiance to pixel grey levels

After the geometric camera model... ... a photometric camera model

2 steps:

1. from object radiance to image irradiance

2. from image irradiance to pixel grey level

Image irradiance and object radiance

we look at the irradiance that an object patch will cause in the image

assumptions : radiance *R* assumed known and object at large distance compared to the focal length

Is image irradiance directly related to the radiance of the image patch?

The viewing conditions

$$I = R \frac{A_l}{f^2} \cos^4 \alpha$$

the cos⁴ law

The cos⁴ law cont' d

Especially strong effects for wide-angle and fisheye lenses

From irradiance to gray levels

