
Computer
Vision Part I : Sampling & quantization

è

1. Discretization of continuous signals
2. Signal representation in the frequency 

domain
3. Effects of sampling and quantization

Part II : Image enhancement

1. Noise suppression 
2. De-blurring
3. Contrast enhancement
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Part I
Sampling 

and 
Quantization
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Recall cameras

CCD    = Charge-coupled device
CMOS = Complementary Metal Oxide Semiconductor 
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Discretization

Computer to process an image :

è

1. sampling 4 “pixels”

2. quantisation 4 “grey levels”
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84   133   226   212   218   218   222   212   218   222   226   218

75   156   177   218   212   218   218   218   218   222   218   218

96     84   133   203   218   218   218   222   212   218   222   218

123    75   111   156   212   218   212   212   218   218   218   226

93     75     71   133   185   231   226   226   222   212   218   218

51     75     75     75   156   206   218   218   218   222   212   222

44   110     75     65   143   194   231   218   218   218   218   218

52   123     69     84     60   156   199   231   231   222   226   226

52     75     84     81     65     69   150   231   231   226   231   231

36     36     84    93      84     71   156   160   240   240   231   231

36     40   113     75     69     75     71   133   194   240   240   240

52     52   105     85     69     75     75   123   111   222   231   231

69     44     69     93     81     75     75     69   150   177   247   240

73     44     40     96   101     75     75     75     84   133   231   240

Sampling & quantization



Computer
Vision Sampling schemes

regular, image covering tessellation
11 with regular polygons 4 3 if equal

rectangular (square) most popular

hexagonal has advantages (more isotropic, no 
connectivity ambiguities, …) + similar structure
in retina

è
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384 x 288 pixels

48 x 36 pixels92 x 72 pixels

192 x 144 pixels

Example of sampling :



Computer
Vision

2 levels - binary 

256 levels – 1 byte8 levels

4 levels

Example of quantisation :
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Image distortion through sampling 

è



Computer
Vision Image distortion through quantisation

è
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Vision Remarks

1. Binary images – 1-bit quantization – useful 
in industrial applications

2. Non-uniform sampling and/or quantization
a. fine sampling for details
b. fine quantization for homogeneous 

regions

è



Computer
Vision A model for sampling

1. Integrate brightness over cell window

è

Image degradations

Aliasing
Leakage

2. Read out values only at the pixel centers



Computer
Vision STEP 1 : integrating over a pixel cell

òò ¢-¢-=¢¢ dxdyyyxxpyxiyxo ),(),(),(

è

This is a convolution: ),(*),( yxpyxi --
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Convolution

è
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Vision Properties of convolution

è

k = h ⇤ f
= (h1 ⇤ h2) ⇤ f
= h1 ⇤ (h2 ⇤ f)

f ⇤ g = g ⇤ f
<latexit sha1_base64="0BuWF0qej1/o+B95TW2xrwSMfB4=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJID2W3CnpRCl48VrAf0i4lm2a3oUl2SbJCWforvHhQxKs/x5v/xrTdg7Y+GHi8N8PMvCDhTBvX/XZWVtfWNzYLW8Xtnd29/dLBYUvHqSK0SWIeq06ANeVM0qZhhtNOoigWAaftYHQ79dtPVGkWywczTqgvcCRZyAg2VnoMKxG6RlEl7JfKbtWdAS0TLydlyNHol756g5ikgkpDONa667mJ8TOsDCOcToq9VNMEkxGOaNdSiQXVfjY7eIJOrTJAYaxsSYNm6u+JDAutxyKwnQKboV70puJ/Xjc14ZWfMZmkhkoyXxSmHJkYTb9HA6YoMXxsCSaK2VsRGWKFibEZFW0I3uLLy6RVq3rn1dr9Rbl+k8dRgGM4gTPw4BLqcAcNaAIBAc/wCm+Ocl6cd+dj3rri5DNH8AfO5w8L7o8/</latexit>



Computer
Vision

Fourier transform

è

To understand the effect of the 
convolution in STEP 1 on the image
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Characterization of functions in 
the frequency domain

orthonormal basis functions 
)(sin)(cos vyuxivyux +++= pp 22

22

1
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è

)( vyuxie +p2
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Vision The Fourier transform

è

Linear decomposition of functions in the new basis
Scaling factor for basis function (u,v)

Reconstruction of the original function in the spatial
domain: weighted sum of the basis functions

® The Fourier transform

® The inverse Fourier transform

f(x, y) =

Z 1

�1
f(↵,�)�(x� ↵, y � �)d↵d�



Computer
Vision Fourier coefficients

),( vuF is complex : ),(),( vuiFvuF IR +

The magnitude 

22 ),(),(),( vuFvuFvuF IR +=

)),(/),(( vuFvuF RIarctan

The phase angle

è



Computer
Vision Fourier decomposition of images

è

F(u,v)       +      F(u’,v’)    +     F(u’’,v’’)    +    …
x                  x                  x

f(x,y)  =                               

=                             



Computer
Vision Fourier decomposition of images

è



Computer
Vision Fourier decomposition of images

è
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• Image with periodic structure

f(x,y) |F(u,v)|

FT has peaks at spatial frequencies of repeated texture

Example importance of magnitude
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Periodic background removed

|F(u,v)|

remove 
peaks

Example importance of magnitude
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f(x,y)

|F(u,v)|

phase F(u,v)

• |F(u,v)| generally decreases with      
higher spatial frequencies

• phase appears less informative

cross-section

Example importance of magnitude
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magnitudephase phase

The importance of the phase



Computer
Vision

The convolution theorem
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The convolution theorem

That is,

ò ò
¥
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Space convolution = frequency multiplication
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è

modulation transfer function=

Point spread function and
Modulation transfer function

O(u, v) = F{o(x, y)}
= F{i(x, y) ⇤ r(x, y)}
= I(u, v)R(u, v)

R(u, v) = F{r(x, y)}
= F{point spread function}



Computer
Vision

The convolution theorem: reciprocity

Space multiplication = frequency convolution
è

C(u, v) = A(u, v) ⇤B(u, v)

c(x, y) = a(x, y)b(x, y)

C(u, v) = A(u, v)B(u, v)

c(x, y) = a(x, y) ⇤ b(x, y)
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Back to STEP 1

è



Computer
Vision STEP 1 : integrating over a pixel cell

òò ¢-¢-=¢¢ dxdyyyxxpyxiyxo ),(),(),(

This is convolution: ),(*),( yxpyxi --

è
O(u, v) = I(u, v)P (u, v)
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Modulation Transfer Function 
of the window function

Fourier transform of window :
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Fourier transform of the window function
2D sinc : 

è

real ➾ no phase shiftspredominantly low-passhowever, phase reversals !



Computer
Vision Illustration of the sinc

è

P (u, v) = wh

✓
sin⇡wu

⇡wu

◆✓
sin⇡hv

⇡hv

◆

<latexit sha1_base64="v9tjX2q1Fqmbi0h9BkZozrN1upQ="></latexit>
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Vision A model for sampling

1. Integrate brightness over cell window

è

Image degradations

Aliasing
Leakage

2. Read out values only at the pixel centers
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Vision STEP 2: local probing of functions

è

Distributions as extension of functions: the Dirac pulse

Function probing (in 1D)

1

xx0

�(x� x0)
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Discretization in the spatial domain 
is multiplication with a Dirac train

multiplication with 2D pulse train
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è

Convolution with a Dirac train: periodic repetition
Yet another duality: discrete vs. periodic 
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Vision Effect on the frequency domain

è
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è

Effect on the frequency domain

1. After sampling you may not get back the original 
signal

2. It depends on the frequency domain representation, 
only band limited signals can be sampled and 
retrieved back

3. Even then you need to sample at a certain rate
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Vision The sampling theorem

If the Fourier transform of a function ƒ(x,y)

is zero for all frequencies beyond ub and vb,

i.e. if the Fourier transform is band-limited,

then the continuous periodic function ƒ(x,y) can be 

completely reconstructed from its samples as

long as the sampling distances w and h along 

the x and y directions are such that

and bu
w

2
1

£

bv
h

2
1

£

è
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Discretization

Computer to process an image :

è

1. sampling 4 “pixels”

2. quantisation 4 “grey levels”
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Vision Quantisation

Create K intervals in the range of possible intensities
measured in bits: log2(K)

Design choices
• Decision levels

• Representative value

• Simplest selection
• equal intervals
• value is the mean
• uniform quantizer

interval [ ] kkk qzz ®+1,

121 ,...,, +Kzzz

è

�
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The uniform quantizer

è

• simple implementation
• fine quantization needed perceptually (7-8 bits)
• can be reduced by optimal design, e.g. 

minimize åò å
= =

+
=-=

K

k

z

z

K

k
kk

k

k

dzzpqz
1 1

21 :)()( dd
(p(z)=prob. density function, for constant uniform)�
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Underquantization example 

256 gray level (8 bit) 

è

11 gray level 
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Remarks

è

• Quantization:
– Often 8 bits  per pixel (monochrome),                                         

24 bits per pixel (RGB)
– Medical images 12 bits (4096 levels) or 16 bits 

(65536 levels)
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Part II 
Image Enhancement
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Vision Three types of image enhancement

1. Noise suppression 

2. Image de-blurring

3. Contrast enhancement

Original Image Noise Blur Bad 
Contrast
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Fourier transform

è

Signal and noise 
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Reminders from previous lecture:
Fourier Transform

Linear decomposition of functions in the new basis
Scaling factor for basis function (u,v)

Reconstruction of the original function in the spatial
domain: weighted sum of the basis functions

® The Fourier transform

® The inverse Fourier transform
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f(x,y)

|F(u,v)| phase F(u,v)

u u

vv
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Reminders from previous lecture:
Convolution Theorem

C(u, v) = A(u, v) ⇤B(u, v)

c(x, y) = a(x, y)b(x, y)

C(u, v) = A(u, v)B(u, v)

c(x, y) = a(x, y) ⇤ b(x, y)

Space multiplication = frequency convolution

Space convolution = frequency multiplication



Computer
Vision Fourier power spectra of images

i(x,y) ɸii = |I(u,v)|2

Amount of signal at each frequency pair

Most nearby object pixels have similar intensity
Most of the signal lies in low frequencies!
High frequency contains the edge information!

Images are mostly composed of homogeneous areas
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Vision Fourier power spectra of noise

n(x,y) ɸnn = |N(u,v)|2

-Pure noise has a uniform power spectra
-Similar components in high and low 
frequencies.
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Vision Fourier power spectra of noisy image

f(x,y) ɸff = |F(u,v)|2

Power spectra is a combination of image and noise
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Vision Signal to Noise Ratio

ɸii(u,v) / ɸnn(u,v)

High SNR

Low SNR

Low SNRLow SNR

Low SNR
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Only retaining the low frequencies

Low signal/noise ratio at high frequencies Þ
eliminate these

è
Smoother image but we lost details!
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High frequencies contain noise
but also Edges!

We cannot simply discard the higher frequencies

They are also introduces by edges ; example : 

è
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Original Image Noisy
Observation

Noise
Suppression
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Vision Noise suppression

specific methods for specific types of noise

we only consider 2 general options : 

1. Convolutional linear filters 
- low-pass convolution filters

2. Non-linear filters
- edge-preserving filters
a. Median
b. Anisotropic diffusion

è



Computer
Vision Low-pass filters: principle

Goal: remove low-signal/noise part of the spectrum

è

Such spectrum filters yield “rippling”
due to ripples of the spatial filter and convolution

Approach 1: Multiply the Fourier domain by a mask
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è

Illustration of rippling
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Approach 2: Low-pass convolution filters

generate low-pass filters that do not cause rippling

Idea: Model convolutional filters in the spatial 
domain to approximate low-pass filtering in the
frequency domain

è

Convolutional
filter

Frequency
mask
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Averaging

è

One of the most straight forward
convolution filters: averaging filters

Separable:
1 1 1

1 1 1

1 1 1
=

1
1
1

1 1 1*

1/9 1/25

1/9 1/3 1/3

o(x, y) = f(x, y) ⇤ i(x, y) = f1(x, y) ⇤ (f2(x, y) ⇤ i(x, y))
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Vision Example for box averaging

Noise is gone. 
Result is blurred!

è
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MTFs for averaging

3 x 3 (separable!)

(1+2cos(2pu)) (1+2cos(2pv))

5 x 5 (separable)

(1+2cos(2pu)+2cos(4 pu))(1+2cos(2pv)+2cos(4 pv))

not even low-pass!è



Computer
Vision So far

1. Masking frequency domain with window type 
low-pass filter yields sinc-type of spatial filter 
and ripples -> disturbing effect

2. box filters are not exactly low-pass, 
ripples in the frequency domain at higher freq.
remember phase reversals?

no ripples in either domain required!

è
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MTF : (2+2cos(2 pu))(2+2cos(2 pv))

Solution: Binomial filters

iterative convolutions of (1,1)

only odd filters : (1,2,1), (1,4,6,4,1)

2D :

è

Also separable
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Vision Result of binomial filter

è
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f :

Limit of iterative binomial filtering

f(x, y) ⇤ f(x, y) ⇤ · · · ⇤ f(x, y) = fn(x, y)

fn(x, y) ! a exp

✓
k(x, y)k2

b

◆
, as n ! 1

Gaussian
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Gaussian smoothing
Gaussian is limit case of binomial filters

noise gone, no ripples, but still blurred…

Actually linear filters cannot solve this problem
è



Computer
Vision Some implementation issues

separable filters can be implemented efficiently

large filters through multiplication in the
frequency domain

integer mask coefficients increase efficiency
powers of 2 can be generated using shift
operations

è
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Vision Question

High SNR

Low SNR

Low SNRLow SNR

Low SNR

Can a linear-shift-invariant systems do a 
perfect job?
Can they separate edge information from noise 
in the higher frequency components? 
Why?
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Vision Noise suppression

specific methods for specific types of noise

we only consider 2 general options : 

1. Convolutional linear filters 
- low-pass convolution filters

2. Non-linear filters
- edge-preserving filters
a. Median
b. Anisotropic diffusion

è
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Median filters  : principle

non-linear filter

method :

■ 1. rank-order neighbourhood intensities
■ 2. take middle value

no new grey levels emerge...

è



Computer
Vision Median filters  : odd-man-out

advantage of this type of filter is its 
“odd-man-out” effect

e.g.
1,1,1,7,1,1,1,1

¯

?,1,1,1.1,1,1,?

è
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Median filters : example
filters have width 5 : 

è



Computer
Vision Median filters  : analysis

median completely discards the spike,
linear filter always responds to all aspects

median filter preserves discontinuities,
linear filter produces rounding-off effects

DON’T become all too optimistic

è
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Median filter  : results

è

3 x 3 median filter : 

sharpens edges, destroys edge cusps 
and protrusions
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Median filters : results
Comparison with Gaussian : 

e.g. upper lip smoother, eye better preserved
è
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Vision Example of median

10 times 3 X 3 median

patchy effect
important details lost (e.g. ear-ring)

è
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Vision Question

For what types of noise would you clearly 
prefer median filtering over Gaussian filtering?

a) Gaussian noise, i.e. noise distributed by 
independent normal distribution

b) Salt and pepper noise
c) Uniform noise, i.e. distributed by uniform 

distribution
d) Exponential noise model
e) Rayleigh noise
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Anisotropic diffusion : principle

non-linear filter

method :

■ 1. Gaussian smoothing across 
homogeneous intensity areas

■ 2. No smoothing across edges

è



Computer
Vision The Gaussian filter revisited

The diffusion equation

Initial/Boundary conditions

If 

in1D: 

Solution is a convolution! 

c(~x, t) = c

f(~x, 0) = i(x, y), for ~x 2 ⌦

f(~x, t) = 0, for ~x 2 �(⌦)

@f(~x, t)

@t
= r · (c(~x, t)rf(~x, t))

@f(~x, t)

@t
= c�f(~x, t)

@f(x, t)

@t
= c

@2f(x, t)

@x2

f(~x, t) = f(~x, 0) ⇤ g(~x, t) = i(~x) ⇤ g(~x, t)



Computer
Vision Diffusion as Gaussian lowpass filter

Nonlinear version can change the width of the 
filter locally 

Specifically dependening on the edge 
information through gradients

f(~x, t) = i(~x) ⇤ 1

(2⇡)d/2
p
ct

exp

⇢
�~x · ~x

4ct

�

� =
p
2ctGaussian filter with time dependent 

standard deviation:

c(~x, t) = c(f(~x, t))

c(~x, t) = c(|rf(~x, t)|)
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Vision Selection of diffusion coefficient

or

𝛋 controls the contrast to be preserved by smooting
actually edge sharpening happens

c(|rf(~x, t)|) = exp

⇢
� |rf |2

22

�

c(|rf(~x, t)|) = 1

1 +
⇣

|rf |


⌘2



Computer
Vision Dependence on contrast

c

 |rf |
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Noisy image Ideal image

After 50 iter After 1000 iter
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Noisy image Ideal image

After 50 iter Isotropic
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Anisotropic diffusion: Output

End state is 
homogeneous
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Restraining the diffusion

adding restraining force : 

@f

@t
= � · (c(|rf |)rf)� 1

�2
(f � i)
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Noisy image Binomial 7x7

Median 5x5 Aniso Diff. wr
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Anisotropic diffusion: Numerical solutions

@f(~x, t)

@t
= r · (c(~x, t)rf(~x, t))

When c is not a constant solution is found 
through solving the equation 

Partial differential equation

Numerical solutions through discretizing 
the differential operators and integrating

Finite differences in space and 
integration in time
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Original Image
What we want

Blurred image
What we observe

Deblurring
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Vision Unsharp masking

simple but effective method

image independent

linear

used e.g. in photocopiers and scanners

è



Computer
Vision Unsharp masking  : sketch

è

red = 
original

black = 
smoothed

orginal –
smooth

original +
difference
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Unsharp masking  : principle

Interpret blurred image as snapshot of diffusion 
process

)( 2 fc
t
f

Ñ=
¶
¶

In a first order approximation, we can write

t
t
fyxftyxf
¶
¶

+» )0,,(),,(
Hence,

fcttyxft
t
ftyxfyxf 2),,(),,()0,,( Ñ-=
¶
¶

-»

Unsharp masking produces o from i

ikio 2Ñ-=
with k a well-chosen constant

è
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Need to estimate 
DOG (Difference-of-Gaussians) approximation 

for Laplacian : 

è

Our 1D example: Convolution 
mask in 2D:

r2i(x, y)
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Vision Unsharp masking: Analysis

è

ikio 2Ñ-=

The edge profile becomes steeper, giving a 
sharper impression

Under-and overshoots flanking the edge further 
increase the impression of image sharpness
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Vision Unsharp masking  : images

è



Computer
Vision Inverse filtering

Relies on system view of image processing

Frequency domain technique

Defined through Modulation Transfer Function

Links to theoretically optimal approaches

è



Computer
Vision A system view on image restoration

System: O
(b(x,y))

Input

i(x,y)

Output

f(x,y)

i,b known f=?: simulation, smoothing
i,f known b=?: system identification
b,f known i=?: image restoration

for de-blurring: b is the blurring filter
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Vision Inverse filtering  : principle

Frequency domain technique

suppose you know the MTF B(u,v) of the 
blurring filter 

to undo its effect new filter with MTF B’ (u,v)
such that

è

f(x, y) = b(x, y) ⇤ i(x, y)
F (u, v) = B(u, v)I(u, v)

B0(u, v)B(u, v) = 1

I(u, v) = B0(u, v)F (u, v)
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Vision Inverse filtering  : formal derivation

è

For additive noise after filtering

Result of inverse filter

B0(u, v) = 1/B(u, v)

F (u, v) = B(u, v)I(u, v) +N(u, v)

F (u, v)B0(u, v) = I(u, v) +N(u, v)/B(u, v)



Computer
Vision

Problems of inverse filtering

è

• Frequencies with B (u,v) = 0
Information fully lost during filtering
Cannot be recovered
Inverse filter is ill-defined

• Also problem with noise added after filtering 
B(u,v) is low -> 1/B(u,v) is high, 
VERY strong noise amplification

F (u, v) = B(u, v)I(u, v) +N(u, v)

F (u, v)B0(u, v) = I(u, v) +N(u, v)/B(u, v)



Computer
Vision

*

1D Example

xx

x
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Restoration of noisy signals

x x

x x
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Inverse filtering  : 2D example

we will apply the method to a Gaussian
smoothed example (s = 16 pixels)

è
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Inverse filtering  : 2D example

Handwaving method 1 : 

CvuB
vuB

+
=¢

),(
1),(

» ideal MTF 1/B (u,v) for large B 
tends to 1/C when B (u,v) → 0

è noise leads to spurious high frequencies
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Vision The Wiener Filter

Looking for the optimal filter to do the deblurring

Take into account the noise to avoid amplification

Optimization formulation

Filter is given analytically in the Fourier Domain

è
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Wiener filter and its behavior

è

Wf(H) = H
0(u, v) =

H(u, v)

H⇤(u, v)H(u, v) + 1/SNR

SNR =
�ii

�nn

• üH(u, v) = 0 =) Wf(H) = 0

SNR ! 1 =) 1/SNR ! 0
• ü

Wf(H) ! 1

H

SNR ! 0 =) 1/SNR ! 1

Wf(H) ! 0
• ü
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Wiener filter: Noiseless reconstruction

è

Medium confidence

High confidence

x

x
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Wiener filter: Noisy reconstruction

è

Medium confidence
Correct SNR

High confidenceLow confidence

x

x x x
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Wiener filtering  : example

è

spurious high freq. eliminated, conservative
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Wiener filter: problems of application

è

• Conservative
if SNR is low tends to become low-pass
blurring instead of sharpening

• SNR =  Φii(u,v)/Φnn(u,v) depends on I(u,v)
strictly speaking is unknown
power spectrum is not very characteristic

• H(u,v) must be known very precisely

is the effective filter (should be 1)Ef = Wf(H)H

O(u, v) = Wf(H)(H(u, v)I(u, v))

= (Wf(H)H(u, v))I(u, v)
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Original Image Observation
with

Bad Contrast

Contrast 
Enhancement
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Vision Contrast enhancement

Use 1 : compensating under-, overexposure

Use 2 : spending intensity range on interesting
part of the image

We’ll study histogram equalisation

è
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Intensity distribution

Histogram

Cumulative histogram
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Slide 119

Intensity mappings

Generic transformation function
Old intensity

N
ew

 in
te

ns
ity

Power law transformation
Inew = Iold

γ

Usually monotonic mappings required



Computer
Vision

Slide 120

Gamma correction

Original

γ = 2

γ = 0.5
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Vision HISTOGRAM EQUALISATION 

WHAT : create a flat histogram

HOW : apply an appropriate intensity map
depending on the image content

method will be generally applicable

è

Flat histogram

Cumulative 
histogram
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Vision Histogram equalisation  : example

è



Computer
Vision Histogram equalisation  : example
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Histogram equalisation : principle

Redistribute the intensities, 1-to-several (1-to-1 in 
the continuous case) and keeping their relative order, 
as to use them more evenly

Ideally, obtain a constant, flat histogram

0 0

maxi maxi

è
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This mapping is easy to find:
It corresponds to the cumulative intensity probability,
i.e. by integrating the histogram from the left

0 0

Histogram equalisation : algorithm

è
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This mapping is easy to find:
It corresponds to the cumulative intensity probability,
i.e. by integrating the histogram from the left

0

Histogram equalisation : algorithm

è
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Vision Histogram equalisation  : algorithm

suppose continuous probability density

cumulative probability distribution : 

)(ip

ò=
i

diipiP
0

**)()(

distribution as our map :)(iT

ò==¢
i

diipiiTi
0max **)()(

!!!))((
maxmax iip

p
id
dipp 111

==
¢

=¢

è



Computer
Vision Histogram equalisation : sketch

C’ C
1

0

intensity intensity

ii’ maximaxi

Cumulative probability

è

actual cum.
probability

target cum.
probability

ò===
i

diipiiCiiTi
0maxmax **)()()('
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Histogram equalisation  : result

intensity map : 

original and flattened 
histograms : 

è
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Histogram equalisation  : analysis

Intervals where many pixels are packed together
are expanded

è

Intervals with only few corresponding pixels are 
compressed
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Histogram equalisation  : analysis

… BUT we don’t obtain a flat histogram

This is due to the discrete nature of the 
input histogram and the equalisation procedure

Jumps in the discretised cumulative probability
distribution lead to gaps in the histogram

è
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Vision Histogram equalisation  : example revisited
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Histogram equalisation  : generalisation

Find a map                     that yields probability
density 

)(iTi =¢
p¢

ò ò
¢

==¢=¢¢
i i

iCdvvpdwwpiC
0 0

).()()()(

with            and           the prescribed and 
original cumulative probability distributions

)(iC ¢¢ )(iC

Thus

))((1 iCCi -¢=¢

è
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Vision Histogram equalisation  : sketch

è

))((1 iCCi -¢=¢


