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Feature: description of a (part of) a pattern / 
object in the image, e.g. shape, texture, 
emitted heat if infrared…

Mathematically: Describe the pattern with a 
vector of values

Goal : efficient matching for 
registration 
correspondences for 3D, 
tracking, 
recognition,
…

f = [f1, . . . , fN ]
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Feature: description of a (part of) a pattern / 
object in the image, e.g. shape, texture, 
emitted heat if infrared…

Mathematically: Describe the pattern with a 
vector of values

Goal : efficient matching for 
registration 
correspondences for 3D, 
tracking, 
recognition,
…
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• features to deal with large variations in
– Viewpoint

Matching is a challenging task
Re-iterating the difficulties with matching

highlighted thus far:



Computer
Vision Matching: a challenging task

• features to deal with large variations in
– Viewpoint
– Illumination



Computer
Vision Matching: a challenging task

• features to deal with large variations in
– Viewpoint
– Illumination
– Background



Computer
Vision Matching: a challenging task

• features to deal with large variations in
– Viewpoint
– Illumination
– Background
– Occlusion



Computer
Vision Considerations when selecting features

n 1. Complete ( describing pattern unambiguously) or not

n 2. Robustness of extraction

n 3. Ease / speed of extraction

n 4. Global vs. local
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Computer
Vision Strategy

è

1. Identifying points of interest
2. Extract local features, vectors, around those 

interest points

• Many features per 
image

• Representing different 
parts of objects



Computer
Vision

PART 1:                             
Identifying “basic” points 
of interest



Computer
Vision Interest points for localizable patches

A feature should capture something discriminative
about a well localizable patch of a pattern

We start with the well localizable bit:

Shifting the patch a bit should make a big 
difference in terms of the underlying pattern

I should be able to get the same point of 
interest under pose / lighting variations



Computer
Vision Outline
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Identifying points of interest

1. Edge detection
a. Gradient operators
b. Zero-crossings of Laplacians
c. Canny Edge Detector

2. Corner detection
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Computer
Vision Edge Detection

edges arise from changes in :

❑ 1. reflectance

❑ 2. orientation 

❑ 3. Illumination (e.g. shadows)

Thus, edges are not necessarily relevant to 
e.g. shape

Methods introduced here are only 1st step,
edge linking is the hard part

è
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Edge detection methods

we investigate three approaches : 

❑ 1. locating high intensity gradient magnitudes

❑ 2. locating inflection points in the intensity profile

❑ 3. signal processing view (optimal detectors)
Canny edge detector

we will only consider isotropic operators

è

Edge

Gradient
magnitude

Inflection
points

Optimal 
detector
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Vision Outline
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Identifying points of interest

1. Edge detection
a. Gradient operators
b. Zero-crossings of Laplacians
c. Canny Edge Detector

2. Corner detection
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Gradient operators : principle
image ƒ(x,y) : locate edges at ƒ’s steep slopes 
measure the gradient magnitude
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the direction of steepest change : rotate 
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Gradient operators : implementation

Gradient magnitude is a non-linear operator

x¶
¶ and

y¶
¶ are linear and shift-invariant

they can thus be implemented as a convolution

è
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Prone to noise!
We want something that will smooth and 
compute gradients
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discrete approximation (finite differences) : 

these are the Sobel masks

Gradient operators : Sobel

@

@x
@

@y



Computer
Vision Gradient operators : Sobel

one mask primarily for vertical and one for 
horizontal edges

combine their outputs : 

❑ 1. take the square root of the sum of their squares

❑ 2. take arctan of their proportion to obtain edge
orientation

these masks are separable, e.g.
T)1,2,1()1,0,1( Ä-

easy to implement in hardware
è
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this is a pure imaginary function, resulting in
p/2 phase shifts

Gradient operators : MTF shows 
smoothing effect of Sobel mask

example : MTF of the vertical Sobel mask

)22cos2)(2sin2( +vui pp

power spectrum : 

u-dir. : band-pass, v-dir. : low-pass
è
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Gradient operators : example

è
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Gradient operators : analysis

result far from a perfect line drawing :

1. gaps
2. several pixels thick at places
3. some edges very weak , whereas others 

are salient

Sobel masks are the optimal 3 x 3 convolution
filters with integer coefficients for step edge
detection

è



Computer
Vision Outline
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Identifying points of interest

1. Edge detection
a. Gradient operators
b. Zero-crossings of Laplacians
c. Canny Edge Detector

2. Corner detection
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Zero-crossings : principle

consider edges to lie at intensity inflections

can be found at the zero-crossings of the 
Laplacian :
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=  linear + shift-invariant  Þ convolution

=  also isotropic

è

Edge

Inflection
points
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Vision Discrete approximations of the Laplacian

MTF of left filter : 
4)2cos(2)2cos(2 -+ vu pp

MTF’s  

è



Computer
Vision Zero-crossings : implementation

sensitive to noise (2nd order der.)

therefore combined with smoothing, e.g. 
a Gaussian : 

fGLfGL *)*()*(* =

yields  “Mexican hat” filter : 

also implemented as DOG (difference of Gaussians)
è
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Zero-crossings : example

one-pixel thick edges
closed contours
yet not convincing

è



Computer
Vision Outline

è

Identifying points of interest

1. Edge detection
a. Gradient operators
b. Zero-crossings of Laplacians
c. Canny Edge Detector

2. Corner detection
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The Canny edge detector

A (1D) signal processing approach

Looking for “optimal” filters

Optimality criteria

è

q Good SNR
strong response to edges
low (no) response to noise

q Good localization
edges should be detected on the right position

q Uniqueness
edges should be detected only once

Optimal 
detector
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=

Characterization of SNR

è

at the edge position

-W W

m(x)

x

q Response to noise n(x)
noise is stochastic (Gaussian, white, uncorrelated)
can be characterized by expected value

q Response of system h to signal
deterministic signal model m(x)
step edge at the origin
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Characterization of SNR

è
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Characterization of localization

è

q Edge location: maximum of the system response
extremum of h(m(x)+n(x)) at x0
again stochastic (depending on the noise)
will deviate from the ideal edge position at 0

q Quantification through expected value
of the deviation from the real edge location

q Localization measure
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The matched filter

è

q Optimal filter h(x) for which

q can be shown that

Essentially identical with the signal to be detected

q For the edge model used: difference of boxes
DOB Filter

max (SNR⇥ LOC)
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The matched filter

è
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Uniqueness

è

q Filtering with DOB generates many local maxima
due to noise

q Hinders unique detection

q Remedy: minimize the number of maxima within
the filter support

q Caused by noise (stochastic)
Characterized by the average distance between 
subsequent zero crossings of the noise response
derivative (f = h’(n))
Rice theorem
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1D optimal filter

è

q Average number of maxima within filter support

should be minimized

q Overall goal function is a linear combination of the
two criteria

the solution depends on c
empirically selected

max

✓
SNR⇥ LOC+ c

1

Nmax

◆
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1D optimal filter

è

Small c

Large c
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1D optimal filter

è

Resembles the first derivative of the Gaussian

Canny selection

Gaussian derivative

Another first derivative based detector
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Optimal filter

è
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Canny filter in nD

è

q The Canny filter is essentially 1D

q Extension to higher dimensions 
q simplified edge model
q intensity variation only orthogonal to the edge
q no intensity change along the edge

q Combination of two filtering principles
q 1D Canny filter across the edge
q (n-1)D smoothing filter along the edge

Gaussian smoothing is used

q The effective filter is a directional derivative of
Gaussian
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The 2D Canny filter

è
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2D implementation on the discrete image raster

è

q Faithful implementation by selecting gradient 
direction: does not respect discretization

q Estimation of directional derivatives instead
considering neighbours on the image raster

N NE

E

SE

q Start with 2D Gaussian smoothing
q Directional derivatives from discrete differences

q Selecting the maximum as gradient approximation

f = G ⇤ I

f 0
N = f(i, j + 1)� f(i, j); f 0

NE(i, j) = (f(i+ 1, j + 1)� f(i, j))/
p
2

f 0
E = f(i+ 1, j)� f(i, j); f 0

SE(i, j) = (f(i+ 1, j � 1)� f(i, j))/
p
2
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Canny 2D results

è

original image Gaussian smoothing
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Canny 2D results

è

Gradient approximation
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Post-processing steps

è

q Non-maximum suppression
q Comparing derivatives  at the two neighbours

along the selected direction

q Keeping only values which are not smaller 
than any of them    

q Hysteresis thresholding
q using two treshold values 
q keep class 1 edge pixels for which 
q discard class 2 edge pixels for which
q for class 3 edge pixels 

keep them only if connected to class 1pixels
through other class 3 pixels

tlow and thigh
|f(i, j)| � thigh

|f(i, j)| < tlow

thigh > |f(i, j)| � tlow
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Canny 2D results

è

Gradient approximation non-maximum suppresion
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Canny 2D results

è

threshold thigh threshold tlow

hysteresis
thresholding 
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Remarks to the Canny filter

è

q The state-of-the-art edge detector even today

q Very efficient implementation
no interpolation is needed as respecting the raster

q Post-processing is the major contribution

q Can be applied to any gradient-based edge
detection scheme

q Fails where the simplified edge model is wrong
q crossing, corners, …
q gaps can be created
q mainly due to non-maximum suppression

q Hysteresis thresholding is only effective in 2D
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A Post Scriptum

e.g. Sobel filter reflects intensity pattern to
be found
other example, line detector 

-1   -1   -1
2    2    2
-1   -1   -1 

in line with the matched filter theorem

è



Computer
Vision Outline

è

Identifying points of interest

1. Edge detection
a. Gradient operators
b. Zero-crossings of Laplacians
c. Canny Edge Detector

2. Corner detection
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consider the pixel pattern within the 
green patches: 

Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

Think of the wedge as being darker than the background,
i.e. not as drawn in the figure…
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How do the patterns change upon a shift?
Is it well localizable?

Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

“flat” region:
no change in 
all directions

“edge”:  
no change along 
the edge direction

“corner”:
significant change 
in all directions
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

WConsider shifting the patch or
`window’ W by (u,v)

• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines the SSD “error” E(u,v):
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Uniqueness of a patch

Taylor Series expansion of I:

If the motion (u,v) is small, then 1st order appr. is good

Plugging this into the formula at the top…
Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

W

Then, with 
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch
This can be rewritten further as:

• Which directions (u,v) will result in the largest and 
smallest E values?

• We can find these directions by looking at the 
eigenvectors of H
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch
This can be rewritten further as:

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and largest change 

(E value)
• x+ = direction of largest increase in E 
• + = amount of increase in direction x+

• x- = direction of smallest increase in E 
• - = amount of increase in direction x-

l

l
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

Want E(u,v) to be large for small shifts in all directions
• the minimum of E(u,v) should be large, over all 

unit vectors [u v]
• this minimum is given by the smaller eigenvalue 

( -) of Hl

llexample image + -
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch
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Interest points

Corners are the most prominent example of 
so-called `Interest Points’, i.e. points that can 
be well localized in different views of a scene

`Blobs’ are another, as we will see… but also 
a blob is a region with intensity changes in 
multiple directions, similar to corners
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The Harris corner detector

Goal : one approach that distinguishes

l 1. homogeneous areas
l 2. edges
l 3. corners

Key : looking at intensity variations in different 
directions : 

l 1. small everywhere
l 2. large in one direction, small in the others
l 3. Large in all directions

è
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Approach : find the directions of minimal and 
maximal change
Second order moments of the intensity variations 
also called the structure tensor:

Look for the eigenvectors and eigenvaluesè
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The Harris corner detector
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The Harris corner detector

The classification can be made as 
l 1. two small eigenvalues
l 2. one large and one small eigenvalue
l 3. two large eigenvalues

First attempt : determinant of the 2nd-order 
matrix,

i.e. the product of the 
eigenvalues : 

è
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The Harris corner detector

Edges are now too vague a class : one very large
eigenvalue can still trigger a corner response.
A refined strategy : 
Use iso-lines for Determinant - k (Trace)2.

è
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

The Harris corner detector
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The Harris corner detector
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The Harris corner detector



Computer
Vision

The Harris corner detector

2 views of an object… are the corners stable?
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The Harris corner detector
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The Harris corner detector
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The Harris corner detector
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The Harris corner detector
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PART 2:                             
Extracting descriptors 
around interest points



Computer
Vision Need for a descriptor:

There are many corners coming out of our
DETECTOR, but they still cannot be told apart

We need to describe their surrounding patch in a 
way that we can discriminate between them, i.e. 
we need to build a feature vector for the patch, 
a so-called DESCRIPTOR

During a MATCHING step, the descriptors can 
then be compared

A feature should capture something discriminative
about a well localizable patch of a pattern



Computer
Vision Additional requirement on the descriptor:

Invariance under geom./phot. changes

A local patch is small, 
hence probably rather planar. 

But how do planar patches deform when
looking at their image projection? 
i.e. we determine the geometric changes 
the descriptor should remain invariant under



Computer
Vision Planar pattern projections to be compared



Computer
Vision Projection : a camera model

Reversed center-image pinhole model : 



Computer
Vision Projection : equations

Z
Xfx =

Z
Yfy =

an approximation...

special cases : 
1.  Z constant, or 
2. object small compared to its distance

to the camera

kYy
kXx

=
=

pseudo-perspective



Computer
Vision Deformations under projection

In particular, how do different views
of the same planar shape / contour differ ?

we study 3 cases : 

1. viewed from a perpendicular direction
2. viewed from any direction but at sufficient 

distance to use pseudo - perspective
3. viewed from any direction and from any 

distance
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Vision Case 1

Case of fronto-parallel viewing : 
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Viewing from a distance : 
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General viewing conditions:

333231

232221

333231
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Vision Invariance and groups

Invariance w.r.t. group actions

Invariance under transformations implies 
invariance under the smallest encompassing 
group

image 1 image 2 image 3

T2T1

I1= I2= I3

T1 T2
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Vision Remarks

There are more groups, but the ones described 
seem the most relevant for us
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Vision Remarks

Complexity of the groups goes up with the 
generality of the viewing conditions, and so 
does the complexity of the group’s invariants

Fewer invariants are found going from left to right
Similarities ⊂ affinities  ⊂  projectivities
Invar. Proj. ⊂ invar. Aff.  ⊂ invar. Sim.
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PART 3:                             
Examples
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Vision Our goal

Define good interest points, i.e.

DETECTORS + DESCRIPTORS

The shape of the patch should change with viewpoint 
for invariance to geometric changes.

What we extract within the patch should be invariant 
to photometric and geometric changes



Computer
Vision The need for variable patch shape

Taking the same square patch around corresponding
interest points leads to a very different content of the
patches… hence the matching will become hard. 
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Vision The need for variable patch shape

Replacing the squares by identical circles does not
really help much… 
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Vision The need for variable patch shape

Allowing the diameters to differ helps somewhat, but
contents still quite different (look at the top regions in
the circles)
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Vision The need for variable patch shape

Using ellipses works much better: the circle on the 
left transforms into an ellipse under the affine transf.
between the local view change 



Computer
Vision The need for variable patch shape

The important thing is to achieve such change in
patch shape without having to compare the images,
i.e. this should happen on the basis of information 
in only one image.
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Vision Example 1: Euclidean invariant features

(Schmid and Mohr ‘97)

Harris corner detector 
to identify corners as 
interest points. 

Circular areas around 
each interest points. 

For each interest point circular areas of different 
radii – to account for scale changes

Extract invariants under planar rotation from each 
area to form the descriptors. 

Very successful model. 
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Example (rotation) invariant:

yyxx GGGG       +

Where        and       represent horizontal and
vertical derivatives of intensity weighted by a
Gaussian profile (`Gaussian derivatives’) 

xG yG

2nd example invariant:

yyxx GG     +
Where        and         represent 2nd order 
Gaussian derivatives 

(Compute features for circles at different scales, 
i.e. take scale into account explicitly) 

 xxG yyG

Example 1: Euclidean invariant features
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• Is gradient rotationally invariant?

• Show that gradient magnitude is rotationally 
invariant. 

yyxx GGGG       +

Question
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1. Search intensity extrema
2. Observe intensity profile along rays 
3. Search maximum of invariant function f(t) along 

each ray 
4. Connect local maxima  
5. Fit ellipse
6. Double ellipse size
7. Describe elliptical patch with moment invariants

Example 2: intensity extrema 
+ affine moments
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( ) ( ) ( ) dxdyyxbyxgyxryxM cbaqpcba
qp   ,  ,  ,  ,,

, ò=

Geometric/photometric moment invariants based 
on generalised colour moments:

abc
pqM are not invariant themselves, need to be combined

Example 2: intensity extrema 
+ affine moments

Example moment invariant from only 2 color bands:
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Example 2: intensity extrema 
+ affine moments



Computer
Vision

Example 2: intensity extrema 
+ affine moments
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Wide baseline stereo matching example.
based on ex.1 and ex.2 interest points 

Remark

In practice different types of interest points
are often combined
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PART 3:                             
Advanced examples
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MSER = Maximally Stable Extremal Regions 

• Similar to the Intensity-Based Regions we just saw

• Came later, but is more often used

• Start with intensity extremum

• Then move intensity threshold away from its value 
and watch the super/sub-threshold region grow 

• Take regions at thresholds where the growth is 
slowest (happens when region is bounded by strong edges)

MSER interest regions
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nii QQQQ ...... 11 ÌÌÌÌ +

iii QQQiq /|\|)( D-D+=

• Extremal region: region such that 

• Order regions, following increasing or
decreasing threshold

• Maximally Stable Extremal Region:
local minimum of

MSER



Computer
Vision MSER



Computer
Vision

SIFT, developed by David Lowe (Un. British
Columbia, Canada), is a carefully crafted
interest point detector + descriptor, 
based on intensity gradients (cf. our comment

on photometric invariance) and 
invariants under similarities, not affine like so far

Our summary is a simplified account! 

SIFT

SIFT = Scale-Invariant Feature Transform



Computer
Vision

)()( ss yyxx LL +

s

s2

s3

s4

s5

list of
(x, y, s)

SIFT
Descriptor is based on blob detection, at several scales, 
i.e. local extrema of the Laplacian-of-Gaussian, or LoG
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Dominant orientation selection 
– Compute image gradients
– Build orientation histogram
– Find maximum

0 2p

SIFT
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SIFT

Dominant orientation selection 
– Compute image gradients
– Build orientation histogram
– Find maximum
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• Image gradients are sampled over a grid
• Create array of orientation histograms within blocks
• 8 orientations x 4x4 histogram array = 128 dimensions
• Apply weighting with a Gaussian located at the center
• Normalized to unit vector

SIFT

(Fig. shows 2x2, actually 4x4)
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Carefully crafted… e.g. why 4 x 4 x 8 ?

SIFT
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Sensitivity to affine changes… quite good !!!

SIFT
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• Interest points are matched on the basis of their 
descriptors

• E.g. nearest neighbour, based on some distance 
like Euclidean or Mahalanobis; good to compare 
against 2nd nearest neighbour: OK if difference 
is big; or fuzzy matching w. multiple neighbours

• Speed-ups by using lower-dim. descriptor space  
(PCA) or through some coarse-to-fine scheme 
(very fast schemes exist to date!)

• Matching of individual points typically followed 
by some consistency check, e.g. epipolar
geometry, homograpy, or topological 

notes on matching


