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Today’s Overview:
•Scale-space
•Unitary transform:

• What are they
• How to define bases / decomposition
• Properties
• Sample transforms

•PCA: Domain-specific transforms

Image Decompositions
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Scale Space

Computer
Vision Scale space: motivation

One way to decompose images, since scenes 
contain information at different levels of detail.

Psychophysical and neurophysiological relevance

1. Increases efficiency by 
sometimes working on 
lower resolutions

2. Helps develop 
hierarchical descriptions
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Scale space: Gaussian-Laplacian pyramid

For image Ii
1. Smooth Ii (with Gaussian) => Si

2. Take difference image:
(since DoG ~= Laplacian)

Li = Ii - Si

3. Reduce smoothed image size:
Ii+1 = down-sample(Si)

The 3rd step is allowed following the Nyquist theorem 
(i.e., given sufficient smoothing).

Zero-crossings of the Laplacian yield edges,
thus interesting information in the Laplacian pyramid;
e.g., important edges coincide spatially at all scales

Computer
Vision Scale space: in discrete domain

Discrete approximations of the Gaussian filters
should ensure not to generate spurious structures!

e.g. for a small (3x1) smoothing filter 
with positive coefficients  c-1 , c0 , c1

make sure that c0
2 ≥ 4c−1c1

i.e., [1,2,1] is a valid scale space filter, 
whereas [1,1,1] is not.
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Unitary Transforms

Computer
Vision

Motivation example

Task: how to find thickness of repeating pattern

Image in pixel-space

It is still the (same) “image”, 
with no more or less info.

But, more useful in this 
domain for our purpose

Image in
Fourier space

Instead of counting peaks, etc; 
we can find the maximum in DFT, 
and take corresponding spatial size
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Unitary image transforms
Image decomposition into a family of 

orthonormal basis images

Fourier decomposition: 1 oriented cosine/sine 
pattern in each basis image
(perfect localization in frequency domain, none in space)

Decomposition as linear combination of basis vectors/images

Examples so far:
Pixelwise decomposition: 1 Dirac impulse at the

corresponding pixel in each basis image
(perfect localization in image space, none in frequency)

Example: For 2x2 images
0
1

Computer
Vision Unitary operators 

- Pixelwise/Fourier have orthonormal basis images

- Fourier transform  (follows from Parseval’s theorem)

- Rotations are unitary (does not change vector lengths)

Unitary operator U is a matrix of all bases as row vectors

They preserve the inner product, i.e. U* U = U U* = I
Or, equivalently U-1 = U* 

For real funcs, only possible (iff) columns of U are orthonormal
(orthonormal: inner-product of all components with self =1, others =0 )
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Unitary transforms 

Properties:
• Concentrate energy in a few components, i.e. 
only few basis images that can faithfully represent

• Compromise localization in space/frequency
(other examples of decompositions given later for more 
balanced localizations in different spaces)

Image independent rotations

(rotations, because new axes are also orthonormal
+ Euclidean distance preserved)

E.g.: decomposition as Dirac impulses or Fourier domain
is decided without knowing type/content of images

(image independent transforms are generic
but suboptimal, as opposed to PCA that we will see later)

Computer
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Basis images: Orthonormal
Orthonormal basis images B conform: 
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• We do want basis images linearly independent of 
each other è orthogonal:  Bi Bj=0

• We do not want an all zero basis B, which would 
generate zero under any linear combination, thus be 
useless in representing anything

• Not to change dimension scales, 
better to have a unit length B è thus Bi Bi=1

with * indicating the complex conjugate, because

necessary 
and 

sufficient
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Let’s see if this holds for Dirac impulses 
in pixelwise decomposition:

0
1

Can these be unitary decompositions?

(A) (B)
1min

Basis images: Orthonormal

-0.5

+0.5

Computer
Vision Orthogonality of functions (e.g. trigonometric)
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For all positive values of m=1,2,…  a countable set 
of orthogonal functions is generated
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Generalization of orthonormality to vector calculus 
towards infinite dimensions (Hilbert spaces)

Example: period               of                 for
w
p2
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Example: period               of                 for
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Problems with infinite dimensions: representation 
need not be unique (e.g. aliased freqs) & 
may not be complete (even funcs)

These problems disappear with discretization

Orthogonality of functions (e.g. trigonometric)
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Completeness condition

Arbitrary square-integrable functions can be 
characterized by their correlations 
with the basis set of orthonormal functions

To represent (N x 1) sample vectors, 
any N orthogonal bases will be complete!  

In the discrete case, the problem is how to find 
sufficient number of orthogonal basis functions.

But, how can we find these bases?
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Completeness condition

E.g. ux
16
2cos p x = 0,1,2…15, and = 0,1,2...u = 0,1,…,8

other u’s identical, but signs reversed; e.g. u=7 & u=9 identical

u = 1…7ux
16
2sin p

1
N
e
−2πiux

NHence, 16 Fourier basis funcs of form:

functions with u=0 and u=8 vanish

An example with 16 samples:
• Cos set is all orthogonal, BUT they repeat (9 & 7 are identical)
• To no surprise, odd funcs cannot be represented by cos set
• Sine can represent odds, thus Fourier basis funcs is a complete set
• This yields 16 orthogonal complex trigonometric basis funcs

Computer
Vision Basis images: Separable

1-D à higher dimensions 
( ) ( ) ( )yxyxB jiij yf=,

Or, equivalently
t
jiijB yf=

With separable basis images, many image analysis operation 
can be run faster (small kernel, separately in each axis)

Pixelwise (Dirac) is separable, i.e. abscissa and ordinate,
But many basis functions are not separable.

(can be decomposed into products of 1D functions)

Not a 
requirement, 
but preferred
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Orthonormality

Pixelwise: 0
1

[1 0],  [0 1]ϕi
t :

Is this (unitary) decomposition separable?  
If so, what are       ?ϕi

t

-0.5

+0.5

Computer
Vision Decomposition of images

åå
-

=

-

=
=

1

0

1

0
),(),(

M

u

N

v
uvuv yxBwyxf

0
1w1

w3

w2

w4

Now we decided the bases B, but how to find the 
representation of a given image, i.e. basis weights wuv

For a given basis Bu’v’  in order to find the weight
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Shift x,y inside
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Vision Decomposition of images: Summary

cf. projection of vector onto basis vectors or 
interpret as correlation with reference patterns

Transformed image:     F(u,v) = wuv
Forward transform:
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Computer
Vision Optimal truncation property 

If only a small number of bases are to be retained,
optimally which weights should be used for those

Optimal truncation property states that
these weights should be the same as original ones!

WHY??  Not so obvious as it seems...

(intuitive description as “any other combination not 
being able to represent/explain the missing info from 
missing bases due to orthogonality of the bases”)
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wuv  that minimize eM�N� are given by:

Show that these weights are indeed the ones 
from the original decomposition

Optimal truncation property 
For a formal proof, when M’N’ dimensions are kept
set a GOAL to find the truncated decomposition
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with M� < M and N� < N, such that 
it minimizes the approximation error (i.e. closest fit)
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Optimal truncation property 
Proof : Show that other weights cuv à larger eM�N�

Last term is positive and is minimized for cuv = wuv
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Vision Optimal truncation property 

This theorem underlies the use of unitary 
transforms for image compression applications:

Energy in images tends to be concentrated in 
lower frequencies
Thus taking more terms (where cuv = wuv) 
always improves the approximation, i.e.
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Computer
Vision Examples of unitary transforms

Assuming square images
n 1. Cosine transform

n 2. Sine transform

n 3. Hadamard transform

n 4. Haar transform

n 5. Slant transform

Generally, we seek decompositions with strong compaction; 
driven by practical experience and implementation efficiency

Cosine transform gives best decorrelation
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Vision Cosine transform 

Converts Fourier transform into a real transform 
and helps suppress spurious high frequencies.

We extend the image around a corner:

The extended image is even!
So, only even funcs (cosines) can represent it,
and the image now wraps around continuously

Computer
Vision

DFT of the extended image:
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Real-valued,
Even to represent periodic image space, 
Also separable

Cosine transform 
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8 x 8 basis images:

Discrete Cosine Transform (DCT)

Computer
Vision

1. Eliminates the boundary discontinuities

2. Components are well decorrelated

3. Requires real computations only

4. Has fast O(n log n) implementations

5. DCT chips are available

6. Was long time the most popular compression basis

Discrete Cosine Transform (DCT)
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DFT vs. DCT

Left : DFT, right : DCT

Computer
Vision

Zonal truncations:

When the same number of samples are retained 
in both cases  (i.e., same compression ratio)

DFT vs. DCT
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DFT
Horizontal top/bottom ripple, 
spurious high frequencies

DCT

DFT vs. DCT

Computer
Vision Slant transform 

on the basis of slant matrices
e.g. basis images for 8 x 8 :

discrete sawtooth-like basis vectors which efficiently represent 
linear brightness variations along an image line
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Haar transform 

• Is an example of a wavelet transform
• localised both in space and in terms of frequency
• Note also that for higher frequencies, the spatial 

extent gets smaller, a typical feature of wavelets

Computer
Vision

The Hadamard transform 

• Only 1s and -1s, therefore no multiplication needed: 
one of the first for HW implementation

• Recursive operation of [1 1; 1 -1]
• Generates minimally correlated binary blocks
• Binary è efficient è barcode reading
• All examples had same orthogonal set for rows&cols, BUT 

need not be so, e.g. Haar X Hadamard possible
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Principal Component
Analysis

Computer
Vision Principal component analysis: Motivation

Image independent transforms are suboptimal

PCA, a.k.a. Karhunen-Loève Transform (KLT)

extracts statistics from images for a customized
orthogonal basis set with uncorrelated weights

PCA: technique based on eigenvectors of the 
covariance matrix
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Central idea:

Reduce the dimensionality of data consisting of 
many interrelated variables, while retaining as 
much as possible of the variation

Achieved by transforming to new, uncorrelated 
variables, the principal components, which are 
ordered so that the first few retain most of the 
variation

Remarks:
• Receiver needs the bases (contrary to generic transforms)
• For a diverse input set, PCA will resemble DCT 

(DCT is the generic transform with optimal decorrelation)
• Use cases: feature selection, classification or inspection

Computer
Vision

Correlated variables

• Observations with two highly-correlated variables: 
e.g. grey-value at neighbouring pixels OR
length&weight of growing children

• Highly correlated values:  x1 has info on x2
• Instead of storing 2 variables, we can store only 1

(needs also the relation of this to original variables, i.e. PCA)

Correlation knowledge helps in compression, 
inspection, and classification
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Decorrelation through rotation

• Using correlation, rotate frame axes, s.t.
maximize variation in 1st component, minimize in 2nd

• We can then potentially drop z2 now

Recall the principle behind unitary transforms : 
rotation in high dimensional spaces

Computer
Vision

Decorrelation through rotation

We shall work around the mean:

• Thus, we are applying a rotation about the mean 
of the distribution  (analogous to ellipse fitting) 

• Extends to hyperellipsoids in higher dimensions, 
where visual inspection is not possible
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Vision Decorrelation through rotation 

Sum of variances do not change with rotations:

With σi2 variance in xi and σj2 variance in zj

result of invariance of center of gravity and 
distance under rotation

Parseval equation 

redistribution of energy / variance

We want as much variance in as few coordinates
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Computer
Vision PCA: introduction

In high dimensional spaces, an optimal rotation 
no longer clear upon visual inspection

Some statistics needed: covariance matrix
(note: underlying assumption of Gaussian distr.!)

Intuitive: fit hyperellipsoid to cluster 
subsequent PCs correspond to axes from the 
longest to the shortest



Computer
Vision PCA: method

first step: look for a linear combination          which 
has maximum variance  (fitting a line in RN)

xcT1

second step: look for a linear combination, 
uncorrelated (orthogonal) with and 
with maximum variance (best fit)

xcT2
xcT1

Suppose x is a vector of p random variables

third step: repeat...

(can extend to points in space & images with pixels)

Computer
Vision Algorithm : Find PCA basis formally

2. Orthonormality: for a unit norm vector: 111 =ccT

xcT1
xcT1

11 cCcT  
111111 ) (     )(  cxxccxxcxcxc TTTTTTT ååå ==

1. Consider with c1 and maximize its variance
var [         ] =              

= is maximized, 

where C is the covariance matrix      
(assuming data is centered around its mean)
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Vision PCA algorithm: c1

Using Lagrange multipliers we maximize

( )11111 -- ccCcc TT l

Thus, λ must be an eigenvalue of C,
where c1 is the corresponding eigenvector

where Ip is the (p x p) identity matrix

Differentiation w.r.t. gives

011 =- cCc l

( ) 0 1 =- cIC pl

1c

Computer
Vision

Which of the p eigenvectors?

lll === 111111 ccccCcc TTT

So l must be as large as possible

Thus, c1 is the eigenvector with the largest 
eigenvalue

The kth PC is the eigenvector 
with the kth largest eigenvalue

PCA algorithm: c1
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Maximize while uncorrelated with22CccT xcT1

PCA algorithm: c2

Proof for k = 2

Thus uncorrelatedness becomes

0  ,0  ,0   ,0 12211221 ==== cccccCccCc TTTT

[ ]
2111211121221

21 , cov

ccccccCccCcc

xcxc
TTTTT

TT

lll ====

=

Computer
Vision

decorrelation vs. orthogonality

0,0  ,0   ,0 12211221 ==== cccccCccCc TTTT

go hand in hand only for main axes of the 
ellipsoid defined by the covariance matrix !

PCA algorithm: c2
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PCA: Decorralation vs. orthogonality example

The given axes are orthogonal,

But max decorrelation 
is not achieved

The conjugate axis would 
yield max decorrelation, 

but is not orthogonal now

To satisfy orthogonality, 
the most decorrelated axis should be picked
among orthogonal ones to the first one

Computer
Vision

Then, using λ, ϕ as Lagrange multipliers

( ) 122222  1 ccccCcc TTT fl ---
Differentiation w.r.t. c2 gives

0122 =-- ccCc fl
Multiplication on the left by gives

0 112121 =-- ccccCcc TTT fl
Tc1

Thus ϕ = 0

Again, maximize , so select 2nd largest λ2l=22CccT
Therefore, ( ) 0  ,  0 222 =-=- cICcCc pll  .i.e

PCA algorithm: c2
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Vision PCA: interpretation

Similarly, the other PCs can be shown to be 
eigenvectors of C corresponding to the 
subsequently next largest eigenvalues

Because C is a real, symmetric matrix, we 
know all its eigenvectors will be orthogonal

We therefore can interpret PCA as a coordinate 
rotation/reflection in a higher dimensional space 
(orthogonal transformation)

Computer
Vision Decorrelation through rotation 

Principal Component Analysis (PCA):
collects maximum variance in subsequent 
uncorrelated components.

In that sense, it is the optimal rotation.

PCs can be interpreted as linear combinations of 
original variables.

Strongly correlated data Þ first PCs contain most 
of the variance
information loss is minimal if only retaining these
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Classification example with PCA: 
satellite images

Example: classification of 5 crop types

Input: 3 spectral bands from SPOT satellite 
Near-infrared (N), Red (R), and Green (G)
each pixel = 20 m x 20 m

Comparison of 2 PCs vs. 3 original bands

Computer
Vision

Classification example : satellite images 

N R G

Until now, each image was a sample,
with a dimension of #pixels

In this example, each pixel is a sample,
with a dimension of #colors (i.e. 3).
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Vision Classification example : satellite images 

Observation: correlation between R and G
N seems uncorrelated

Given all pixels of this sample image, 
a 3x3 covariance matrix of “colors” can be found:
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Principal Components:
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with eigenvalues: 129.1135, 84.8359, and 2.4022

Classification example : satellite images 

Classification results would then compare:
3 original bands: 76.3 % accuracy
2 first PCs: 73.5 % accuracy
Note only a very minor accuracy loss

1st PC ≈ near-infrared input N
2nd PC ≈ a combination of R&G

notice the low eigenvalue of 3rd PC, 
which we can thus ignore
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Inspection ex.: eigenfilters for textile
Motivation:
> High eigenvalues indicate eigenvectors (filters)
representing ordinary, repeating, common patterns.
> Conversely, lower eigenvalues (or differences 
between responses to different filters) may help 
detect out-of-ordinary, rare occurrences.

Example application: textile inspection 

Filters are applied with size of one period [8,6]
(period found as the peak in autocorrelation)

Computer
Vision

(Complete example in Texture lecture)

As we will see, PCA allows for the design of
dedicated convolution filters, ordered by the
variance in their output when applied across
the image. 

Flaws which won’t follow the typical pattern 
may then express itself in low-variance
components or variation across filter 
responses (as outlier values).

Inspection ex.: eigenfilters for textile
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Vision Mahalanobis distance of filter energies:

Flaw region found by thresholding:

Inspection ex.: eigenfilters for textile

Computer
Vision

“Mean” faceAveraging of input faces

Image compression ex.: eigenfaces
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Vision Image compression ex.: eigenfaces

Neighbouring pixel intensities are highly correlated

Consider image as large intensity vector

Eigenvectors: �eigenimages�

Computational problems : 
N2 x N2 covariance matrices!

Specifying image statistics: which exemplary set?

Image dependence: eigenimages needed!

Computer
Vision

Karhunen-Loève transform = PCA on images

Redistributes variance over a few components 
most efficiently

Best approximation: Minimal least-square error for 
truncated approximations

Dimensionality problem can be remedied: 
formulation as eigenvalue problem in space of 
dimension equal to number of sample images

Image compression ex.: eigenfaces



Computer
Vision

( ) ( )ii
i

T

iii
T

iii
T

cX
n

cXXX
n

cXcXXX
ccXX

÷
ø
ö

ç
è
æ=÷

ø
ö

ç
è
æ

=

=

l
l

l

1

n samples, p-dimensional  space, pn <
Consider the (p x n)-matrix X with samples as columns

Eigenvectors of a (n x n)-matrix need to be found

Dimension in number of samples/images

TXX
n

C 1
= XXS T=

(p x p) covariance matrix
Much smaller (n x n) matrix
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-2s +2s

…

-2s +2s

…

Shape can also be PCA’ed, e.g.

Mean face shape 
+ appearance

Variation in shape Variation in appearance
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Point Distribution Model
Shapes as a set of points:

IDEA: If the sought shape is known,
use that to analyze shapes or regularize a surface fitting

Shape Modeling 
with Principal Component Analysis (PCA):

Covariance 
matrix

Generative Model for (similar) shapes:

Variation around mean shape

Statistical Shape Modeling

Correspondonce
required

Computer
Vision

SSMs for segmentation (also comes later)

Can be “trained” from example shapes:
i.e. find the covariance matrix after aligning shapes

Fitted iteratively to shape edges, as in deformable contours
(in contrast, fitting move is projected onto shape [PCA] space)

Image (edge) appearance at shape nodes can also be modeled
in order to use in the iterative fitting process
à “Active Shape and Appearance Models”    ASM / AAM
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Independent 
Component

Analysis

Computer
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ui A=

Goal of ICA

Suppose we have n signals/images i , which are 
linear combinations of n underlying signals/images u  

ICA aims to extract the       ui
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Examples for ICA

3 sound sources at different positions in a room, 
captured by 3 microphones, also at different 
positions. 

The 3 microphones would capture 3 different linear 
mixes.
ICA can – from the 3 microphone signals – deduce
the 3 original sounds. 

A vision example is to extract a pattern behind a 
window and a pattern reflected in it, if 2 images 
were taken under different illuminations, such that 
the relative amounts of both are different. 

Computer
Vision

Unmixing window reflection & background 
2 images

ICA components
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Fingerprint on a banknote (a 2nd example) 

Forensic Sample Clean Banknote (registered)

Independent components Contrast enhanced

Computer
Vision

Remarks on ICA

ICA is not a unitary transformation, i.e. not a rotation!

Instead, it is a general linear transformation.

This is also logical, as it has to apply (the inverse of)
an arbitrary linear transformation. 

The algorithm is based on the assumption that the
underlying signals u are statistically independent
(and not just decorrelated as with PCA). 
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Convolutions in Neural Networks:

Coarsening structure (U-net) : scale-space
Convolutions: image transformations 

(not necessarily unitary) 

Needs “training” examples (to tune transformations)
Still aims to project data in a (feature) space,
where it is most discriminative / best separable.

sounds familiar to PCA?

Computer
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Modes Morphs

Image compression ex.: eigenfaces


