Segmentation

Computer _
Vision Segmentation
Grouping pixels into segments, to identify

(semantic) entities in the image, e.g. objects

M Industrial inspection
M Disease diagnosis
B Understanding scenes




Computer Segmentation : Outline
Vision
® Thresholding (voxel-based)
® Morphological enhancement
® Connected-components

® Edge-based
® Hough Transform
® Deformable contours
® Region-based
® Region-growing, Watershed
® Pattern Recognition (Feature-)based
® Clustering (unsupervised)
® Generative modeling (supervised)
® Discriminative modeling (unsupervised)

Computer
Vision

Thresholding : basic idea

Assuming contrast between object and background,
determine intensity threshold to divide in 2 segments

Example image 006

Histogram

O

Threshold =5 Threshold = 25 Threshold = 50 Threshold =70




S BIDl  Thresholding : threshold selection
Vision

Histogram
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If intensities of objects and background are known - easy
Otherwise, make a guess based on, e.g.:
1. From histogram, take the minimum between two peaks
2. For known size (e.g. for industrial applications),
increase threshold until reaching a predefined area
3. Maximize sum of gradient magnitudes
at pixels with threshold intensity
4. Define based on regions with high response
to Laplacian filter, i.e. points around edges

Computer Thresholding: Otsu criterion
Vision o , L
Maximize inter-group variance ==
minimize intra-group variance (weighted by group size p)

(i.e., we want large areas of low variance)

Group 1 Group 2
| > threshold | <= threshold
relative area, variance relative area, variance
2 2
P1,0q P2,09

Try for every possible threshold, - ==

L 2 2
to minimize p107] + pP205

Otsu threshold
=35
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Computer
Vision

Thresholding: Global vs. Local Otsu

. JADVANCED ADVANCED
Eb MICRO & MICRO
DEVICES DEVICES

Am29000-16KC
F 146XB62 SU

© 1987 AMD
Image Fixed threshold
ADVANCED ADVANCED
ﬂ MICRO g MICRO
DEVICES DEVICES
Am29000-16KC Am23000-16KC
F 146XB62 SU F 146XB62 SU
© 1987 AMD © 1987 AMD
Image specific Local Otsu
Otsu threshold threshold

Since lighting, noise, etc. may change across the image,
one can find different (local) thresholds

With noise

Pixels may fall on the wrong side of the threshold

Threshold at 35;:

Potential solution: Mathematical morphology
to enhance binary images
e.g., to remove isolated islands or holes




Computer _ _
e Mathematical Morphology: Basics

» QOperations on binary images

« Based on pixel neighborhood
defined by structural elements

* View binary image as a set

» Shift-invariant

* Non-linear Binary Image: A

« Two main operations:

Dilation
A® B = {z|B, N A0}
) Erosion
Binary structural
element: B Ao B ={x|B, C A}
Computer Example
Vision
Given structural element:
EROSION DILATION

Erosion

Dilation

AcB={z|B, CA} A®B={x|B,NA#0}




Computer Opening and Closing
Vision

Not to change object size (by much),
concatenate (same number of) opposite basic operations, e.g.

Opening (A& B)@® B Closing (A® B)© B

Computer

Vision Opening and closing: Example

Opening Closing

(mostly removes islands) (mostly removes holes)




Computer Interpretation of morphological
Vision as rank order operators

New intensity based on
rank-ordered neighborhood values:

11 <1 < --- <y

lt = ft(/l’la'"aZN)
Erosion 1t = 11
Dilation ’it =1 N
Median filtering it =1 N/2

Enables extension to gray level images

Important difference with convolution : non-linearity

Computer _
Vision Binary enhancement : Remarks

H 1. Erosion + dilation (opening)
Dilation + erosion (closing)

MW 2. Use the same structural element for both steps
M 3. It is a post-processing approach
(It has many alternatives that enforce

neighborhood consistency during segmentation)

M 4. Reminder : median filtering very useful and
commonly used as edge preserving smoothing




Computer _ _
Vislfon Multiple objects: Connected components

We would like to separate these objects
Connected component analysis

What does it mean to be a connected object?

Computer Discrete image space:
Vision Neighbourhood on Cartesian image raster

* Pixels connected through neighbourhood chain

« Connected component:
if all its pixel pairs are connected through a
chain of pixels all within the same component

» Defined by the pixel neighbourhood structure
« There is no unique definition
* 4- and 8-connectivity the most popular

X ,?@’




Computer Topology induced (distance) metrics
Vision

Depends on the chosen definition of image
topology and neighborhood connectivity

e.g., D, (Manhattan) and Dg distances
Between points P(i,j) and Q(k,l) :
Dy(PQ) =i — k| +j -1

Ds(P,Q) = max(|i — k|, |7 =)

“Discs” (equidistant regions) in D, and Dyg

Euclidean would be‘

does not conform with any discrete neighbourhood

Computer
Vision Distance calculation
Distance transformation: “distance map”

based on distance propagation along
neighbourhoods

» Euclidean distance map
* True implementation is very cumbersome
* Approximations are possible




Computer _ .
I Single-pass 8 connected-component labeling
« Scanning the image line-by-line (TV scan)

enforces an (artificial) causality
« At every pixel (red) its neighbourhood is divided

into past (green) and future (blue)

« Label red, considering all labels of past pixels. If
* No label found: start a new label
* 1 label found: copy it
» >1 labels found: note their equivalence
» At the end, co-label equivalent components
(connected but initially labeled as different)

Computer
Vision




Computer
Vision

Thresholding : remarks

O Threshold advantages:

1. Serious bandwidth reduction
2. Simplification for further processing
3. Availability of real-time hardware

A Generally it won'’t provide a satisfying
segmentation

O Pixel-by-pixel decision
* ignores neighbouring pixels
» structural information lost

Computer Thresholding has limitations
MECUE X-ray attenuation is tissue dependent

2 bone
= W
- blood liver

tumour
kidney heart

pancreas intestine

water

breast

fat
lung

Overlap in intensity ranges

hinder (pixelwise)
thresholding decisions

*Spatial continuity, edges, etc.
can help separate objects
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Computer
Vision

Segmentation : Outline

® Thresholding
® Edge based
® Region based

® Statistical Pattern Recognition based

Edges as a strong cue

that delineate object boundaries
|dentifying boundaries between different areas / objects

Image After thresholding with Otsu criteria

Edge Detection with Canny




Computer
Vision

Edge linking techniques

® 1. Hough Transform: for predefined shapes

® 2. Elastically deformable contour models
Snakes: generic shape priors

® 3. Many other methods for grouping
combination with user interaction
(dynamic path search — in the script)

Computer
Vision Hough transform : principle

Uses parametric shape models to extract
objects in lower dimensional spaces

Instead of testing every possible position and
orientation for the shape, each pixel is visited
while voting for all shapes it may belong to

The simplest example: straight lines

Many further possibilities, like circles, ellipses and
generalizations to other shapes




Computer _ _
Vision Hough transform : straight lines

Suppose we would like to detect straight lines
e.g. straight object outlines
in all possible positions and orientations.

For general shapes : 3 degrees of freedom

Straight lines, however, remain invariant
under translation along itself

Hence, the image projection of a straight line
is fully characterized by 2 parameters

Computer _ _
Vi 5 Hough transform : straight lines
1S101n

We write the equation of a straight line as
y=ax+b

Fixing a point (x,y), all lines through the point :
b=(—x)a+y

The Hough transform :

® 1. Inspect all points of interest
® 2. For each point draw the above line in

(a,b) - parameter space




Computer Hough transform : straight lines
Vision

image parameter space
)’A ; . : bA .
3 S PO S— 3 ] '
B ,

................. ‘.. -
- S S
S I N

0 L 2\ 3

implementation :

1. the parameter space is discretised
2. a (weighted) counter is incremented

at each parameter cell where the lines pass
3. At the end, peaks are detected

SRl Hough transform : straight lines »
Vision . /
problem : unbounded parameter domain
vertical lines require infinite a

alternative representation: .

y/\

xcosf +ysind =p

P

\e
x

Each point will add a sinusoidal function in the
(p,0) parameter space
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Computer
Vision

Hough transform : straight lines

Square : Circle :

v

Hough transform : superposition

Combined image:




Computer

Vision Hough transform : straight lines

Computer
Vision

Hough transform : detecting the book




Computer Hough transform : works when other
Vision objects are present

Computer
Vision Hough transform : remarks

(4 1. time consuming

(1 2. robust, to noise in the image, ...

1 3. “good” peak detection is nontrivial

1 4. Robustness of peak detection is increased

by weighting contributions (e.g in the examples
weighting with intensity gradient magnitude)

1 5. Ambiguities possible — if similar objects are
close by...




Computer Edges vs. boundaries
Vision

Edges are useful to infer shape and occlusion, e.g.

Here the raw edge

output is not so bad  But, quite often the boundaries of
interest are fragmented, and

we have a set of “cluttered” edges

Images from D. Jacobs

SO BISEl  Active contour models: Snakes
Vision [Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987]

Intuition: an elastic band wrap around given structures while
filling-in any missing parts (thanks to its continuous structure)

(G7)37||Q7

initial intermediate final

Idea: Evolve a contour iteratively to fit object boundary,
e.g. high image gradients

Implementation:
» Define a function for how good any given configuration is

* lteratively optimize configuration




Computer _
Vision Snakes energy function

The total energy of the current snake is: @
+ F

E — external

total — internal

Internal energy: encourage prior shape
preferences: e.g. smoothness, elasticity, known
shape prior

External energy (image energy): encourage
contour to fit interesting image structures, e.g.
edges

A good fit between the current snake and the
target shape in the image will yield a low energy

Computer . .
Vision Parametric curve representation

Continuous case:

v(s) =(x(s), y(s)) 0<s<1

For numerical computation on the image
Discretization by a set of n points:

v, =(Xx,,y,) i=0...n-1




Computer External (image) energy
Vision

« Measure how well the curve matches the image data
» Attracts the curve toward interesting image features
— Edges, lines, etc.

- (Magnitude of gradient)

—(G1)* +Gu(1)?)

Defines how the image (edges) affect rubber band

Think of it as gravitational pull towards regions of,
e.g., high contrast

Computer

e External (image) energy

* Image I(x,y)
* Directional derivatives

G.(x,y) G,(x,y)

» External energy at a point v(s) on the curve:
E iorna V() = (| G (v() [ +| G, (v()[*)
1
E external j E external (V (S )) dS
0

» External energy for the curve on discrete image
n—1
Eexternal = _Z|Gx(xi9yi)|2+|Gy(xi7yi)|2

i=0




Computer
Vision

Internal energy: intuition

Typical objects have continuous and smooth
boundaries, i.e. low curvature

Computer

Vision Internal energy

A common choice: Deformation Energy
*The more stretch and bend, the larger this energy value is
*Weights a and B adjust influence of each component

1
Einternal — j Einternal (V(S)) dS
0

dvl | |d%v
al——/ HBl—F=—
ds d’s

Models elasticity Models stiffness
Penalizes tension Penalizes curvature
(inhibits stretch)  (inhibits bending)

E internal (v(s)) =

Examples after fitting:

B: large medium small




SlEl  |nternal energy: Discretization

Vision
dv d’v
ds B Vi Vi st ® (Vi =V) =V, =Vi) =V =2V + Vi
n-1
E ’ 2 ’
internal "~ z o ||Vi+1 - Vi || t ﬁ ||Vi+1 - Vi + Vi—l ||
i=0
Elasticity, Tension Stiffness, Curvature
l / First-term prefers shorter curves.
. — Problem: This encourages a
closed curve to shrink, eventually,
/ to a cluster of coincident points

Possible remedy: adjusting energy term
n-1

Einternal - Z a(l _1)2 + ﬂ
0

Encourages equal spacing but makes optimization harder

2

Via =2V, + Vv,

Vin =V

Computer . . .
Vision Optional: specify shape prior

If object is some smooth variation of a known
shape, we can add a term to penalize
deviations from that shape:

where {V;} are the points of the known shape




Computer Pressure or Interactive forces
Vision

Quite easy to define additional / alternative forces in the energy:
» Constant pressure can push the curve outside; aka. balloons

« Energy function can be altered online based on user input;
e.g. push or pull the snake points with the mouse pointer

« Some heuristic force
e.g. avoiding image borders, utilizing output of another algorithm

“Elastic springs” attached
to snakes points push them

n—1 2
r

E sh + away from the pointer (p)
P i—O with nearby points
h pushed the hardest

distance of snake points

to pointer p
Computer S
i Energy minimization

Several methods proposed to fit snakes,
including methods based on :

— Partial Differential Equations (PDEs)
— Greedy search
— Dynamic programming (for 2D snakes)




Computer
Vision

 Remarks:

Greedy energy minimization

* For each point, place a search grid (e.g., 5x5) of

discrete positions around it and pick the location
where the energy function is minimal

» Keep applying this and circling around the curve

» Stop when a predefined number of points have not

changed in the last iteration,
or after max number of iterations

— Individual decisions are not
globally optimal

— Convergence not guaranteed

Computer
Vision

Limitations

Smoothing choice is critical,
not to over-smooth the boundary

Not robust to topological differences changes,
e.g., “what is a gap to fill in?”, un/connected components

@-W-Te




Computer Limitations: Only locally optimal

Vision Snakes only “see” nearby object boundaries
i.e. the external energy does not consider the edges far away
from the curve (determined by gradient kernel, DP search box, etc)

A
image gradients
large only near
the boundary

Potential remedy: External energy based on the distance

from edges (makes snakes “farsighted”) Values tell how far each
location is from nearest edge

3

gradient edges distance map

Computer Snakes: Summary
Vision

* Framework to fit deformable contours via optimization

» Define a curve as a set of n points, an internal
deformation and an external image-based energy

 Initialize “near” object boundary, and iteratively optimize
the curve points to minimize the total energy

Pros:

« Useful to fit non-rigid arbitrary prior shapes in images

« Contour remains connected, i.e. topology is fixed

» Possible to connect / fill in invisible contours

* Flexibility in energy function definition,
i.e., allows other forces and interactive input

Cons:

* Local optimization: may get stuck in local minimum
Thus, needs good initialization near true boundary

» Susceptible to parameterization of energy function,
must be set based on prior information, experience, etc.




Computer Active Shape and Appearance Models
Vision

Shape model: Implicit energy via fitness to a statistical model
(remember PCA)

to find closest shape model

Appearance model: Make a local intensity model of edge at point v;

| e

[Cootes et al., Handbook of Biomedical Imaging, 2015]

Grid defined by normal

2 Model point W vuunuary
Profile normal
0 boundary \

Model boundary Y el oy

nple positions Model point [ Sample positions

Computer Implicit curve definitions: Level-sets
Vision

Reading for those interested: Chan & Vese, Active Contours Without Edges, 2001
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Segmentation : Outline

® Thresholding
® Edge based
® Region based

® Statistical Pattern Recognition based

Region growing : principle

On the basis of segment homogeneity
(rather than inhomogeneity around edges)

start with detection of “homogeneous” regions
(e.g. low intensity variance) as the “seeds”

These are grown pixel-by-pixel along
borders considering some stopping
(homogeneity) criterion

Choice of suitable homogeneity
criterion is not straightforward




Computer . _
Vision Region growing : example

Seeds from low intensity variance are grown,
for intensities between two (floating)
thresholds and merging any similar segments

Computer . .
Vision Region growing : example

* Often does not perform well
* Also, risk of leakage
through low contrast edges




Computer . _
Vision Region growing : remarks

region growing pure is a one-way process :
if seeds are wrong, errors cannot be corrected

solution : split-and-merge procedures

- merge similar touching regions (easy)
- split (more difficult, many ways to do)
special representations, e.g. “quadtrees”, may help

Region and edge based methods can be
combined: hybrid approaches

Computer

Vision Watershed algorithm o

Simulates the filling/drainage of
an image topographical map, to
find separated water catchment
basins, e.g. (touching) objects

Watershed line ~ Catchmentbasins  catchment basins begin

filling w/i\th water watershed line forms here
| /

JA

+ Starting with local minima

» Different implementations of water filling
(usually based on some type of region growing)

Stop propagation at detected ridges (lines)
* Usually strong over-segmentation (many segments)




Computer
Vision

Watershed segmentation: Example
Watershed on original image

Computer
Vision : :
Segmentation : Outline

® Thresholding
® Edge based
® Region based

® Statistical Pattern Recognition based




Computer Statistical pattern recognition
Vision

» General scheme
* Feature based

* Probabilistic and learning based formulations

Object »| Measurements > Features »| Object class

sensors Feature Classification
extraction

Three alternatives:

1. Unsupervised clustering

2. Supervised generative modeling

3. Supervised discriminative modeling

Additional variations and formulations exist.
Each of these can go very deep

Computer Example application : 1
Vision
»| Measurements > Features »| Object class
sensors Feature Classification
extraction

Objects: Frog

1 Sensors: Camera

" Measurements: Pixels intensity

Features: Color

Object classes: Foreground /
Background




Computer Example application : 2
Vision

Object »| Measurements > Features »| Object class

sensors Feature Classification
extraction

‘ Objects: Human body
Sensors: X-ray Computed Tomography
Measurements: X-ray attenuation
(Hounsfield unit)
Features: Hounsfield unit
Object classes: Different organs
and outside

- | |In general, the features are essential
and have major influence on the results

Computer Basic Notation
Vision
The set of all possible classes:

Q= {wi,ws,...,wk}

For M measurements, and
n features extracted for each measurement :

{Uj};\il ?7:{”01,?}2,...,1}”} e R"

Examples of features:

» Color — 3 dimensional

» X-ray attenuation — 1 dimensional
* Pixel location — 2 dimensional
 Combinations...




Computer Unsupervised clustering: principles
Vision

We want to distribute measurements to classes

Goal:

« Homogeneity within classes

» Reducing variance over features

» Can take into account multiple features

Available information:
*\We only know the features

*No information on the classes
(to be found as a result of this
“unsupervised” process)

eunghSl Unsupervised clustering: K-means Algorithm
Vision

A popular and widely used algorithm.
Given M measurements (samples) of length-n features:

— M —
{U;};21  T={v1,v2,...,v,} €R"
Choose K centers / means
m; eR" 1=1,.... K

Repeat until centers (m’s) do not change:
For all measurements j, assign to nearest center j

_ ST 2
c; = arg; min ||U; — my]|
For all centers /, update it to center-of-mass

M M
PRI LS />,
t=c; — ; J J

I, 1=y¢;
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Computer
Vision

K-means analysis
(for K classes)

K-means remarks

Extremely easy to implement

Useful initial analysis

Choice of K has a major influence

Methods exist to choose it automatically:
Heuristic methods based on variance
Non-parametric Bayesian

Initialization is important

K-means can get stuck in local minima
Multiple initializations
Multi-scale methods




Computer Generic probabilistic formulation

Vision Extracted features are different for
each measurement : random / non-deterministic

Joint probability distribution of
features and classes

Marginal distributions
* Probability of class occurrence

(a priori probability)
P(w;) = /P(?Z w; )dv
» Probability of observing a specific feature
S

Computer Generic probabilistic formulation
Vision

Conditional distributions

* Given class information
(measurement likelihood)

S :p(ﬁawi)
PO =y

» Given measurements
(class posterior) - Bayes’ theorem

p(U,w;) P(’lez‘)f(wi)

p(®  p(?)
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Computer
Vision

Generic probabilistic formulation: examples

v . X-ray attenuation (HU) at a given pixel

P(bone) : Probability that any pixel is bone

P(v = 250) : Probability that a pixels value
is 250 HU
P (¢ = 250|bone) : Probability that a bone
pixel is 250 HU

P(bone|t' = 250) : Probability of the pixel being bone
given its measurement of 250 HU

Supervised Generative Models : principle

Assumes existing examples where we can learn
distributions for measurements and classes:

p(vwi)  p(wi)

Make use of this information to segment images, e.g.
v : grey level intensity
p(Vwey) = N (250, 10)

p(wyy) = N (150, 50)
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Computer
Vision

a-posteriori distribution

Compute posterior distributions
via Bayes theorem:

Can be learnt Prior
7y . e . P .
P(wz|77) — p(vﬂiul) — p(v|w1)_) (wl)
p(7) p(7)
Constant

Final segmentation by maximum a-posterior (MAP)

arg; max(p(w;|v))

p(wbg V) p(wfg |¥7)

Importance of distributions

Learning the right distribution is crucial
for the accuracy of the segmentation

e.g., what would happen with a different choice:
p(vlwey) = N (150, 50)
p(Vwey) = N (200, 50)




Computer Likelihood instead of posterior

Vision Plu|) = (U, w;) @)’ (w;)

——————

p(?) p(7)
Posterior distribution can be difficult to compute
 How to get class priors?
in accuracy, class imbalance, etc.

p(Tlwyg) = N(0.3,0.4)  p(Tlwrg) = N(0.7,0.2)
p(wpy) = 0.9, p(wea) = 0.1

1.5 — v v . v 1_23. — v v
p(Tlwi)p(ws) | p(v|wy)
17 [ 1 0.8}

0.6}

0.5/ : 1 0.4}

0.2}

0! : : | o ; g e
2 -15 -1 -0 0 05 1 156 2 258 3 0~ -15 -1 -05 0 05 1 16 2 2§ 3

Alternatively: Maximize the likelihood function arg; max p(v|w; )

Computer _ .
Vision Remarks on Generative Supervised Models

 Mathematically sound

« Can be extended to various features
* Flexible and generic

« Links to Bayesian methods

 Features are very important
« Optimization and inference can be hard
* For high dimensional features

estimation of distributions is problematic
(use of latent variables)




Computer Discriminative learning: principles
Vision

For mapping from features to classes

{Uj}é\g m) {w;};,

A procedure that takes the features as input and
predicts the segmentation label / class assignment

f(U;) = ¢

In terms of probabilities, this is similar to
modeling posterior or its maximum

f(v5) ~ p(c;|T;) f(¥;) ~ arg,. max p(c;|v;)

But, we “learn” a direct “mapping” from examples

Discriminative learning:

Computer o
Training Data

Vision
« Composed of images and
the corresponding

segmentations of the
objects you are interested in

* Application dependent

*  The “ground-truth”
segmentations are often
annotated manually or with a
semi-automatic algorithm

« Can be VERY expensive

« and VERY valuable




SuuBCl Discriminative learning: Finding a mapping
Vision

f(05) =¢
« Mapping is a parametric model
«  KNN — K-nearest neighbors
» Logistic regression (of binary class)
d
1

- (>
C = = v
) 1—|—6Xp(—50—5TU)’ 6 ZZl/B’L 7
« Neural networks: ¢; =0 (830 (87 0(8] 7))
U1 O.‘ .....
5 O
B O
U3 ”.:O‘:O
vy Qi

« Decision trees - random forests m

Discriminative learning:

Computer _ =
Vision Learning / Training Phase
V1 Q-
1 ., »“:‘:.‘“‘::p:‘- .
C: — 2 Q.;' {:; ::':.p
J 1 —By — BTy Zv':t'bi.,:‘:
+ exp ( 6 0 6 U) 3 o u{)
va G

¢j =0 (B30 (B a(657)))
« Estimating the parameters of the model,

in order to obtain the best possible
segmentation in the training examples

Training data:  { (v, c,,,)}f,:[:1

* Optimization by
minimizing the
discrepancy between
algorithm segmentation
and ground truth




Computer Discriminative learning:
Vision Segmentation Testing phase

» Extract the features used during training
+ Use the mapping learned before

Computer K-nearest neighbors - KNN
Vision
* Find the K nearest neighbors within the
training dataset.
* For training examples we know the features
and the labels

Training Examples

N ey e

0 X5

o o

-i% .‘ "J e
2 0 oW,
’.l&o

-2 0 ‘2 4
feature 1




Computer
Vision

Computer
Vision

feature 2

K-nearest neighbors - KNN

« The mapping is defined through the labels
of the K-nearest neighbors

f(v) = c
Training Exampl
VI N9 X. mpies Find the K training
Voo examples with
®J 0 minimum distance
 J
- < d(v, v
e e 1)
Mok, e ° Mapping is the
E ’. ee function of the
. s, A corresponding labels
0 . .02 — f(ﬁ) :f(cla'”aCK)
feature 1

K-nearest neighbors — KNN:
parameterization

Define the term “nearest” = distance

Define the mapping  f(¥) = f(c1,...,¢cK)
« Majority voting

* Weighted majority voting

« Probabilities with uncertainties

With an additional training,
the parameters of the distance and mapping can
also be estimated if there are any...




Computer Remarks on KNN
Vision

Pros:

* Very simple to implement

* Very simple to understand

» Efficient implementations possible
approximate nearest neighbors,...

* Distance definition is flexible

Cons:

» Highly depends on the definitions and K

* Need to keep the entire data in memory
for distance computations

* For high dimensional problems, KNN needs
a LOT of training samples for accuracy
(use alternatives instead, e.g. NNs, RFs, ...)

Computer Discriminative learning: Decision Trees
Vision

v

.
o
o
K
.
o
o
o
.
o
o
o

‘e
0
0
0
0
e
0

;

At each internal node n, there is fu(7) = 0 — go left
a binary question on the features ”" 1 — go right

At each leaf node, there is a
prediction and it changes from fil
leaf node to leaf node

Uv)=c
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Random forests: During Segmentation

O =d=A{v1,...,va}
O

. 0 — go left _,
f"(v):{ 1 — go right filv) = ¢

K5 B En i A

Random Forests: remarks

Pros:
« Easy to implement
« VERY efficient

» Technology behind Kinect (earlier version)

Cons:
» Lots of parametric choices
* Needs large number of data

« Training can take time
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Computer
Vision

Example: lllustrating pipeline

Directly classify from features,
or alternatively regress to some probability map for further processing

Features Probability map Segmentation

Summary of Segmentation

Voxel-based:

» Thresholding: Otsu (automatic threshold determination)
= Individual voxel decisions often need post-processing with
morphological operators

Edge-based:

* Hough transform: Parametric models to vote for shapes in lower
dimensional space

= Elastically deformable shapes: Iteratively update a contour to fit
borders

= Connected components:

Region based:

= Region growing: Starts from seeds, grow homogeneous regions
(splitting/merging/...)

= Watershed: Simulate flooding, e.g., gradient magnitude as natural
borders/ridges

Pattern Recognition based




Computer
Vision

Appendix

Computer
Vision Outline

« Supervised generative learning:
From individual pixels to combinations
Markov Random Fields
Gibbs sampling
Graph-cuts

« Supervised discriminative learning
for segmentation
KNN

Random Forests




Computer
Vision From individual pixels to combinations:

« Earlier probabilistic segmentation model
considers each pixel independently
(similarly to simple thresholding)

* Independence between pixels

« Mathematical morphology for
thresholding results

* |s there a way to do this with graphical
models?

Cgfll?mer From individual pixels to combinations:
SR general formulation
Class for
: C Ci EW, ..., W
each pixel {3 Jj=1> =] { 1 ) K}

Joint distribution for an individual pixel:

ple; = wi, ;) = p(U;w;) P(w;)
= p(U[c;)P(ey)
Joint distribution B M
of all pixels when p(c, V) = Hp(gﬂcj)P(Cj)
independent j=1

Joint distribution

when pixels are H p(U;lc;) P
not independent =
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Topology

The problem of the bridges of Kdnigsberg
Prusia (Today’s Russia - Kaliningrad)

Solution: Euler, 1736

The birth of graph theory
Independent of distances

Computer
Vision

Markov Random Fields: principle

M

p(c,¥) = | [ p(¥lc;)P(c)

j=1

MRF sets up the prior distribution
based on the Markovian property
Depends on the neighborhood structure

G ; = neighbors of ]
P(c¢jles;) = Plejleg,)

Probability of ¢; only
depends on its
neighbors if all
others are given




Cgfmputef Markov Random Fields:
15101 Energies and Gibbs distributions

P(Cj|C/j) = P(Cj|CGj)

Common way to define it is through defining an energy

E(c) = Z Z d(cj, ck)

J=1 kGGj
d(cj, ci) : distance between ¢; and cy

From energies we can define a
probability distribution

Gibbs Distribution
(Boltzmann Distribution)

P(c) = - exp(~E(c))

Distance to enforce consistency!

Cg;m?utef Markov Random Fields:
1sion Posterior Maximization

Segmentation through posterior maximization:

arg. max P(c|[v) = arg, maxp(V|c)P(c)
M
= arg, max | | p(¥lc;) exp(—E(c))
j=1

If the data model is also exponential of an energy
p(Tj]e;) oc exp(—f (), 0c,))

Energy model for the prior distribution — Ising / Potts Model
0, ¢ =ck

d(Cj,Ck;) = >‘5(Cj # Ck) - { A, C; # Cj




Computer

Vision Optimization
arg, max p(c|v) = arg,. maxp(V|c)P(c)
Equivalently
arg, mmz — He;) TE — fe; —1—/\2 Z d(c;j # ck)
Jj=1keqG;

» Very difficult to compute the posterior distribution
« Difficult to solve the optimization exactly in 2D and higher
* NP-hard [Boykov, Veksler and Zabih 2001 TPAMI]
« Approximate energy minimization
Gibbs sampling [Geman & Geman 1984]

Iterated conditional modes (ICM) [Ferrari et al. 1995]
via Graph Cuts [Boykov, Veksler & Zabih 2001]

Cg;?ll?“ter Stochastic Relaxation / Gibbs Sampling:
IR In action
Noisy image Initial segmentation

After 1 iteration of Gibbs After 25 iterations
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Stochastic Relaxation / Gibbs Sampling:
analysis with respect to A

Noisy image

Computer
Vision

Stochastic Relaxation / Gibbs Sampling:
remarks

« Very simple implementation and effective

« Stochastic in nature

» Solution depends on the lambda parameter
» Solution depends on initial condition

* Not very efficient — convergence is slow

« Does not always converge to a pleasing result




