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Motion 
Extraction


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Computer
Vision

Motion is a basic cue

Motion can be the only cue for segmentation

Biologically favoured because of camouflage
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Motion is a basic cue

… which set in motion a constant, evolutionary race
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Computer
Vision

Motion is a basic cue
Motion can be the only cue for segmentation
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Computer
Vision

Motion is a basic cue
Even impoverished motion data can elicit a 
strong percept

http://www.biomotionlab.ca/Demos/BMLwalker.html5
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Vision

Some applications of motion extraction

 Change / shot cut detection

 Surveillance / traffic monitoring

 Autonomous driving

 Analyzing game dynamics in sports

 Motion capture / gesture analysis (HCI)

 Image stabilisation 

 Motion compensation (e.g. medical robotics)

 Feature tracking for 3D reconstruction

 Etc. !
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Shot cut detection & Keyframes

Shot cut

Shot cut

7



Computer
Vision Human-Machine Interfacing
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Computer
Vision 3D: Structure-from-Motion

Tracked Points gives correspondences
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Temple of the Masks, Edzna, Mexico

3D: Structure-from-Motion
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Vision www.arc3d.b
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Computer
Vision in this lecture...

Several techniques, but…
this lecture is restricted to the 

1. detection of the “optical flow”

2. tracking with the “Condensation filter”


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Vision

optical flow


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Computer
Vision Definition of optical flow

OPTICAL FLOW = apparent motion of 
brightness patterns

Ideally, the optical flow is the projection of the three-
dimensional motion vectors on the image

Such 2D motion vector is sought at every pixel of 
the image (note: a motion vector here is a 2D translation vector) 


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Computer
Vision Caution required !

Two examples where following brightness patterns 
is misleading: 

1. Untextured, rotating sphere

⇓
O.F. =  0

2. No motion, but changing lighting

⇓
O.F. ≠ 0


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Computer
Vision Caution required !
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Vision

Qualitative formulation



Suppose a point of the scene projects to a
certain pixel of the current video frame. Our
task is to figure out to which pixel in the next
frame it moves…

That question needs answering for all pixels of
the current image.

In order to find these corresponding pixels, we
need to come up with a reasonable assumption
on how we can detect them among the many.

We assume these corresponding pixels have
the same intensities as the pixels the scene 
points came from in the previous frame. 

That will only hold approximately… 17



Computer
Vision Mathematical formulation

I (x,y,t) = brightness at (x,y) at time t

Optical flow constraint equation :

0
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

This equation states that if one were to track the image 
projections of a scene point through the video, it would
not change its intensity. This tends to be true over short
lapses of time.  

Our mathematical representation of a video:
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Computer
Vision Mathematical formulation

I (x,y,t) = brightness at (x,y) at time t

Optical flow constraint equation :

0
 
 

=
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x
I

dt
dI



Note the different types of time derivatives !

Our mathematical representation of a video:
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Computer
Vision Mathematical formulation

I (x,y,t) = brightness at (x,y) at time t

Optical flow constraint equation :

0
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+
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=
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dt
dy

y
I

dt
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x
I

dt
dI



Change of intensity when
following a physical point
through the images

Our mathematical representation of a video:

Change of intensity when
looking at the same pixel
(x,y) through the images20
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0  =++ tyx IvIuI

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Mathematical formulation

We will use as 
shorthand 
notation for 

1 equation
per pixel
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Vision

The aperture problem 

0  =++ tyx IvIuI

1 equation in 2 unknowns… the `aperture problem’


, =
dt
dxu

dt
dyv =

, 
∂
∂

=
y
II y t

IIt ∂
∂

=

Note that we can measure the 3 derivatives of
I, but that u and v are unknown
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Computer
Vision The aperture problem 

( ) ( ) tyxtyx IvuIIIvIuI −=⋅⇒  =++ ,,0

Aperture problem : only the component along the 
gradient  can be retrieved 

22
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I
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
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Computer
Vision The aperture problem 
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Computer
Vision Remarks
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Computer
Vision Remarks

1. The underdetermined nature could be
solved using higher derivatives of intensity

2. for some intensity patterns, e.g. patches with
a planar intensity profile, the aperture problem 
cannot be resolved anyway. 



For many images, large parts have planar intensity
profiles… higher-order derivatives than 1st order are 
typically not used (also because they are noisy) 

26



Computer
Vision

Horn & Schunck algorithm 

Breaking the spell via an …
additional smoothness constraint : 

,))()(( 2222 dxdyvvuue yxyxs +++= ∫∫
to be minimized, 
besides the OF constraint equation term

,)( 2 dxdyIvIuIe tyxc ++= ∫∫



The integrals are over the image.

27



Computer
Vision

Horn & Schunck algorithm 

Breaking the spell via an …
additional smoothness constraint : 

,))()(( 2222 dxdyvvuue yxyxs +++= ∫∫
to be minimized, 
besides the OF constraint equation term

,)( 2 dxdyIvIuIe tyxc ++= ∫∫

minimize es+λec



(also reduces influence of noise)
28



Computer
Vision The calculus of variations

look for functions that extremize functionals 

(a functional is a function that takes a vector as its input 
argument, and returns a scalar)



dxdyIvIuI tyx
2)(  ++ + ∫∫λ

like for our functional:

what are the optimal u(x,y) and v(x,y) ?
29



Computer
Vision The calculus of variations

look for functions that extremize functionals

and 22 )( fxf =



with               ,
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Computer
Vision Calculus of variations 

Suppose 

1. f(x) is a solution

2. η(x) is a test function with η(x1)= 0
and η(x2) = 0



Rationale: supposed f is the solution, then 
any deviation should result in a worse I; 
when  applying classical optimization over 
the values of ε the optimum should be ε = 0

We then consider

31



Computer
Vision Calculus of variations 

Suppose 

1. f(x) is a solution

2. η(x) is a test function with η(x1)= 0
and η(x2) = 0



With this trick, we reformulate an optimization 
over a function into a classical optimization over 
a scalar… a problem we know how to solve

We then consider

32



Computer
Vision Calculus of variations 

Suppose 

1. f(x) is a solution

2. η(x) is a test function with η(x1)= 0
and η(x2) = 0



for the optimum : 

00 ==εεd
dI Around the optimum, the 

derivative should be zero

33



Computer
Vision Calculus of variations 

Suppose 

1. f(x) is a solution

2. η(x) is a test function with η(x1)= 0
and η(x2) = 0

for the optimum : 

02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη


with with 34
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Vision

Calculus of variations



02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη

Using integration by parts : 

Using integration by parts:

where
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Calculus of variations



02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη

Using integration by parts                                  : 
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Calculus of variations

Using integration by parts                                  : 



02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη
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Calculus of variations

Using integration by parts                                  : 

[ ] ,)()()( dxF
dx
dxFxdxFx f
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x

x
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Calculus of variations

Using integration by parts                                  : 

[ ] ,)()()( dxF
dx
dxFxdxFx f
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xf
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2
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ηηη

Therefore

02

1

=−∫ dxF
dx
dFx f

x

x f ))(( 'η

regardless of η(x), then 0=− ′ff F
dx
dF

Euler-Lagrange equation


02
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=′+ ′∫ dxFxFx f

x

x f ))()(( ηη
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Calculus of variations

Generalizations

 1. dxffffxFI
x

x
,...),,...,,,( 2121

2

1

′′= ∫
Simultaneous Euler-Lagrange equations,
i.c. one for u and one for v : 

0=− ′iffi F
dx
dF


40
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Calculus of variations

Generalizations

 1. dxffffxFI
x

x
,...),,...,,,( 2121

2

1

′′= ∫
Simultaneous Euler-Lagrange equations,
i.c. one for u and one for v : 

0=− ′iffi F
dx
dF



then repeat, once deriving w.r.t. ε1 ,
once w.r.t. ε2
thus obtaining a system of 2 PDEs

As we add ε1 η1 to f1 , and ε2 η2  to f2

41
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Calculus of variations

Generalizations

 1. dxffffxFI
x

x
,...),,...,,,( 2121

2

1

′′= ∫
Simultaneous Euler-Lagrange equations,
i.c. one for u and one for v : 

0=− ′iffi F
dx
dF

 2.    2 independent variables x and y

dxdyfffyxFI yyxD x ),,,,( εηεηεη +++= ∫ ∫


42



Computer
Vision Hence 

Now by Gauss’s integral theorem,

such that

)  (
)()(

dxFdyFdxdy
y
F

x
F

yx

yx
fD f

f

D

f ηη
ηη

−=
∂

∂
+

∂

∂
∫∫ ∫ ∂

= 0 

Calculus of variations


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Calculus of variations



0
)()(

=
∂
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∂

∂
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y
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yx f

D

f ηη

44



Computer
Vision

Calculus of variations

dxdy
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
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Horn & Schunck

The Euler-Lagrange equations : 

0

0

=
∂
∂

−
∂
∂

−

=
∂
∂

−
∂
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−

yx

yx

vvv
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F
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In our case ,
,)()()( 22222

tyxyxyx IvIuIvvuuF ++++++= λ

so the Euler-Lagrange equations are 
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ytyx

xtyx

IIvIuIv
IIvIuIu
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++=∆

λ

λ

2

2

2

2

yx ∂
∂

+
∂
∂

=∆ is the Laplacian operator


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Horn & Schunck

Remarks : 

1. Coupled PDEs solved using iterative 
methods and finite differences (iteration i)

2. More than two frames allow for a better 
estimation of It

3. Information spreads from edge- and corner-type 
patterns



,)(          

,)(          

ytyx

xtyx

IIvIuIv
t
v

IIvIuIu
t
u

++−∆=
∂
∂

++−∆=
∂
∂

λ

λ
i

i

_
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

Horn & Schunck, example result

48



Computer
Vision Horn & Schunck, remarks

1. Errors at object boundaries

2. Example of regularisation
(selection principle for the solution of
ill-posed problems by imposing an extra
generic constraint, like here smoothness)



(where the smoothness constraint is
no longer valid)

49
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Vision

condensation filter


50



Computer
Vision

condensation filter



as an example of a `tracker’,
shifting the emphasis from 

pixels to objects… 

51
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Condensation tracker

tx
tz

tw
tv

state vector

observation vector

noise in system model

noise in measurement
model

System. M. Measur. M.

52



Computer
Vision Condensation tracker

),( 111 −−−= tttt wxfx

1. Prediction , based on the system model

( f = system transition function)

),( tttt vxhz =

2. Update , based on the measurement model

( h = measurement function)

),  ...  ,( 1 tt zzZ = is the history of observations
53



Computer
Vision Condensation tracker

Example

1,11  −−− +∆+= tpttt wptpp 

1,1 −− += tptt wpp 

position

velocity

ttt vpz +=

System model

Measurement model

),( ttt ppx =

dots indicate time derivatives

54
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Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution

55
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Vision

Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. Distribution
(p here means probability…)

1. Prediction

11111  )|( )|()|( −−−−− ∫= ttttttt dxZxpxxpZxp

2. Update

56
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Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution

1. Prediction

11111  )|( )|()|( −−−−− ∫= ttttttt dxZxpxxpZxp

2. Update

)|(
)|( )|()|(

1

1

−

−=
tt

tttt
tt Zzp

ZxpxzpZxp

)|( 1−tt Zzp can be considered a normalization factor
57
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Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution

Bayes´ rule

)|,(  here                                     
),(    )( )|(    )( )|(

1−

==

ttt Zzxp
bapbpbapapabp

2. Update

)|(
)|( )|()|(

1

1

−

−=
tt

tttt
tt Zzp

ZxpxzpZxp

)|( 1−tt Zzp can be considered a normalization factor
58
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Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution
Bayes´ rule

2. Update

)|(
)|( )|()|(

1

1

−

−=
tt

tttt
tt Zzp

ZxpxzpZxp

)|( 1−tt Zzp can be considered a normalization factor
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Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution

1. Prediction

11111  )|( )|()|( −−−−− ∫= ttttttt dxZxpxxpZxp

2. Update

)|(
)|( )|()|(

1

1

−

−=
tt

tttt
tt Zzp

ZxpxzpZxp

60



Computer
Vision

Condensation tracker
Example cont’d

)|,( ttt zppp 

)|( tt pzp

)|,( 111 −−− ttt zppp 
a posteriori prob.
distr. at t-1

)|,( 1−ttt zppp  a priori prob.
distr. at t

prediction

update
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Condensation tracker

Recursive Bayesian filter

11111  )|( )|()|( −−−−− ∫= ttttttt dxZxpxxpZxpCalculating 
numerically is very time consuming, and the prob.
distributions have to be known…

Analytic solutions are only available for the simplest
of cases, e.g. when distr. are Gaussian and the 
system and measurement models are linear…
(Kalman filter, 1960 - Kalman was prof. at ETH, D-ITET)
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Condensation tracker

Recursive Bayesian filter

11111  )|( )|()|( −−−−− ∫= ttttttt dxZxpxxpZxpCalculating 
numerically is very time consuming, and the prob.
distributions have to be known…

Analytic solutions are only available for the simplest
of cases, e.g. when distr. are Gaussian and the 
system and measurement models are linear…

That’s where CONDENSATION comes in, acronym for
CONditional DENSity propagATION
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K
A
L
M
A
N

F
I
L
T
E
R

1,11  −−− +∆+= tpttt wptpp 

1,1 −− += tptt wpp 

System model

Measurement model

ttt vpz +=

In our example
model is linear,

distributions Gaussian
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K
A
L
M
A
N

F
I
L
T
E
R
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Computer
Vision Condensation tracker

The probability distribution is represented by a
sample set S (set of selected states s)

{ }NnsS nn  ... 1|),( )()( == π

With        a weight determining the sampling 
probability

π
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Computer
Vision Condensation tracker

1. prediction

Start with        , the sample set of the previous
step, and apply the system model to each sample,
yielding predicted samples 

1−tS
)(' n

ts

2. update

Sample from the predicted set, where samples
are drawn with replacement and with probability

)|( )(')( n
tt

n szp=π (i.e. using meas. model)

In the limit (large N) equivalent to Bayesian tracker
67



Computer
Vision Condensation tracker

)|,( 111 −−− ttt zppp 

prediction

)|,( 1−ttt zppp 

)|( tt pzp
weighing 

update

)|,( ttt zppp 
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Computer
Vision Condensation tracker

NOTE

Sample may be drawn multiple times, but
noise will yield different predictions for samples
corresponding to the same state after drawing.

This diversification through noise is important,
as otherwise fewer and fewer different samples
would survive

69



Computer
Vision )|,( 111 −−− ttt zppp 

)|,( 1−ttt zppp 

prediction

)|( tt pzpweighing with

)|,( ttt zppp 

update

C
O
N
D
E
N
S
A
T
I
O
N

Example cont’d
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Computer
Vision Condensation tracker

Comparison with Kalman filter

Condensation                           Kalman-Bucy

Unrestricted system models
Unrestricted noise models
Multiple hypotheses

Discretisation error
Postprocessing for interpret.

Linear system models
Gaussian noise
Unimodal

Exact solution
Direct interpretation
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Vision Condensation tracker
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Computer
Vision Condensation tracker
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Computer
Vision Condensation tracker
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Computer
Vision Condensation tracker

75



Computer
Vision Condensation tracker
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Computer
Vision Condensation tracker
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Computer
Vision Condensation tracker
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Computer
Vision Condensation tracker
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Computer
Vision Condensation tracker
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Computer
Vision Condensation tracker
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Condensation tracker

1,11  −−− +∆+= txttt wxtxx 

1,1 −− += txtt wxx 

position

velocity

Elliptical region with prescribed color histogram

System model

1,11  −−− +∆+= tyttt wytyy 

1,1 −− += tytt wyy 

1,11  −−− +∆+= tHtxtxtx x
wHtHH 

1,11
 −−−

+∆+= tHtytyty y
wHtHH 

1,1 −− += tHtxtx x
wHH 



1,1 −−
+= tHtyty y

wHH 


size

size chance
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Vision Condensation tracker

Measurement model

22
−

−
= σ

ρ

σπ
π

1 

2
1  e

∑
=

=
m

u

uu qp
1

)()(  ρ

with

where p and q are the color histograms 
of a sample and the target, resp.
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Vision Condensation tracker
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Computer
Vision Mean shift tracker
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Computer
Vision Mean shift tracker
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Computer
Vision Condensation tracker
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Computer
Vision Condensation tracker
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Computer
Vision Other approaches

1. Model-based tracking (application-specific)
- active contours (discussed with segmentation)
- analysis/synthesis schemes



2. Feature tracking (more generic)
- corner tracking (shown when we discuss 3D)
- blob/contour tracking
- intensity profile tracking
- region tracking
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Computer
Vision Model-based tracker

(EPFL)
90



Computer
Vision Model-based tracker

(EPFL)
91
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Vision

Motion capture for special effects

92
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