3D
 acquisition

Computer Vision

3D acquisition taxonomy

Computer Vision

3D acquisition taxonomy

Computer Vision

Stereo

The underlying principle is "triangulation" :

Computer Vision

(Passive) stereo

Simple configuration :

Computer Vision

q identical cameras
q coplanar image planes
q aligned x-axes

Computer Vision

A simple stereo setup

Reminder :

the camera projection can be formulated as

$$
\rho p=K R^{t}(P-C)
$$

for some non-zero $\rho \in \mathbb{R}$
Here R is the identity...

Computer Vision

A simple stereo setup

$$
\left.\rho\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=K\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)\left|\left(\begin{array}{l}
x^{\prime} \\
\rho^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=K\left(\begin{array}{l}
X-b \\
Y \\
Z
\end{array}\right)\right| \begin{array}{ccc}
f k_{x} 0 & 0 \\
0 & f k_{y} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Computer Vision

A simple stereo setup

$$
\left\{\begin{array} { l }
{ x = \frac { f k _ { x } X } { Z } , } \\
{ y = \frac { f k _ { y } Y } { Z } , }
\end{array} \text { and } \left\{\begin{array}{l}
x^{\prime}=\frac{f k_{x}(X-b)}{Z}, \\
y^{\prime}=\frac{f k_{y} Y}{Z},
\end{array}\right.\right.
$$

Note that $y=y^{\prime}$

Computer Vision

A simple stereo setup

The 3D coordinates of the point are

$$
\begin{aligned}
X & =b \frac{x}{\left(x-x^{\prime}\right)} \\
Y & =b \frac{k_{x}}{k_{y}} \frac{y}{\left(x-x^{\prime}\right)} \\
Z & =b k_{x} \frac{f}{\left(x-x^{\prime}\right)}
\end{aligned}
$$

$\left(x-x^{\prime}\right)$ is the so-called disparity
Stereo is imprecise for far away objects, but increasing b and/or f can increase depth resolution

Computer Vision

A simple stereo setup

Notice: for this simple setup, same disparity means same depth

Computer Vision
same disparity means same depth

Computer Vision

A simple stereo setup

Increasing b increases depth resolution

one has to strike a balance with visibility...

Computer Vision

A simple stereo setup

Increasing f increases depth resolution

one has to strike a balance with visibility...

Remarks

r 1. increasing b and/or f increases depth resolution but reduces simultaneous visibility
r 2. iso-disparity loci are depth planes, not so for other configurations
r 3. as soon as the disparity gets too small, depth difference can no longer be seen; hence human stereo only works up to $\pm 10 \mathrm{~m}$
r 4. the real problem is finding correspondences

Computer Vision

A simple stereo setup

The HARD problem is finding the correspondences

Notice : no reconstruction for the untextured back wall...

Computer Vision

A simple stereo setup

The HARD problem is finding the correspondences

Notice : no reconstruction for the untextured back wall...

Computer Vision

Computer Vision

Computer Vision

Stereo, the general setup

We start by the relation between the two projections of a point, to ease correspondence search
In the second image the point must be along the projection of the viewing ray for the first camera :

Stereo, the general setup

We cast this constraint in mathematical expressions :
p and p^{\prime} are the two images of P

$$
\begin{aligned}
& \mu p=K R^{t}(P-C) \\
& \rho^{\prime} p^{\prime}=K^{\prime} R^{\prime t}\left(P-C^{\prime}\right)
\end{aligned}
$$

w.r.t. world frame P is on the ray with equation

$$
P=C+\mu R K^{-1} p \quad \text { for some } \mu \in \mathbb{R}
$$

Computer Vision

Stereo, the general setup

so, the ray is given by

$$
P=C+\mu R K^{-1} p \text { for some } \mu \in \mathbb{R}
$$

Now we project it onto the second image In general, points project there as follows :

$$
\rho^{\prime} p^{\prime}=K^{\prime} R^{\prime t}\left(P-C^{\prime}\right)
$$

and thus, filling in the ray's equation
$\rho^{\prime} p^{\prime}=\mu K^{\prime} R^{\prime t} R K^{-1} p+K^{\prime} R^{\prime t}\left(C-C^{\prime}\right)$

Computer

 VisionStereo, the general setup
the projected ray was found to be
$\rho^{\prime} p^{\prime}=\mu K^{\prime} R^{\prime t} R K^{-1} p+K^{\prime} R^{\prime t}\left(C-C^{\prime}\right)$
the second term is the projection of the 1 st camera's center, the so-called epipole

$$
\rho_{e}^{\prime} e^{\prime}=K^{\prime} R^{\prime t}\left(C-C^{\prime}\right)
$$

the first term is the projection of the ray's point at infinity, the so-called vanishing point finally, adopting the simplifying notation
$A=\quad K^{\prime} R^{\prime t} R K^{-1}$

$$
\rho^{\prime} p^{\prime}=\mu A p+\rho_{e}^{\prime} e^{\prime}
$$

A is the infinity homography

Computer Vision

Stereo, the general setup

the projected ray

$$
\begin{gathered}
\rho^{\prime} p^{\prime}=\mu K^{\prime} R^{\prime t} R K^{-1} p+K^{\prime} R^{\prime t}\left(C-C^{\prime}\right) \\
\text { or } \\
\rho^{\prime} p^{\prime}=\rho_{e}^{\prime}\left(\mu A p+e^{\prime}\right) \\
\text { is called the epipolar line for } p
\end{gathered}
$$

and runs through the points $A p$ and e^{\prime}

Computer Vision

Stereo, the general setup

note that the epipole lies on all the epipolar lines

Computer
Vision

Stereo, the general setup

$$
\rho^{\prime} p^{\prime}=\mu A p+\rho_{e}^{\prime} e^{\prime}
$$

Computer Vision

Stereo, the general setup

$$
\rho^{\prime} p^{\prime}=\mu A p+\rho_{e}^{\prime} e^{\prime}
$$

expresses that p 'lies on the line l 'through the epipole e^{\prime} and the vanishing point $A p$ of the ray of sight of p (in the $2^{n d}$ image)

Computer Vision

Stereo, the general setup

$$
\rho^{\prime} p^{\prime}=\mu A p+\rho_{e}^{\prime} e^{\prime}
$$

the epipolar constraint (epipolar line)
we can rewrite this constraint as

$$
\left|p^{\prime} e^{\prime} A p\right|=p^{\prime \prime}\left(e^{\prime} \times A p\right)=0
$$

Computer Vision

Stereo, the general setup

$$
\left|p^{\prime} e^{\prime} A p\right|=p^{\prime \prime}\left(e^{\prime} \times A p\right)=0
$$

can be written, given

$$
\begin{aligned}
& \quad\left[e^{\prime}\right]_{\times}=\left(\begin{array}{rrr}
0 & -e_{3}^{\prime} & e_{2}^{\prime} \\
e_{3}^{\prime} & 0 & -e_{1}^{\prime} \\
-e_{2}^{\prime} & e_{1}^{\prime} & 0
\end{array}\right) \\
& \text { as } \\
& \left|p^{\prime} e^{\prime} A p\right|=
\end{aligned} p^{\prime t}\left[e^{\prime}\right]_{\times} A p-1 .
$$

$F=\left[e^{\prime}\right]_{\times} A$ is the fundamental matrix
F is a 3×3 matrix, but has rank 2

Computer Vision

Stereo, the general setup

$$
p^{\prime t}[e]_{\times} A p=0 \rightarrow p^{p^{\prime} F p=0}
$$

The 3-vector $p^{\prime}{ }^{t} F$ contains the line coordinates of the epipolar line of p^{\prime} (i.e. a line in the 1 st image that contains its corresponding point p)

The 3-vector $F p$ contains the line coordinates of the epipolar line of p (i.e. a line in the 2nd image that contains its corresponding point p^{\prime})

Hence, the epipolar matrix works in both directions

Computer Vision

Stereo, the general setup

Andrea Fusiello, CVonline

Computer Vision

Epipolar geometry cont'd

Computer Vision

Epipolar geometry cont'd

- Epipolar lines are in mutual correspondence

- allows to separate matching problem: matching pts on an epipolar line to pts on the corresponding epipolar line

Computer Vision

Exploiting epipolar geometry

Separate 2D correspondence search problem to 1D

 search problem by using two view geometry

Computer
Vision

Epipolar geometry cont'd

Computer

 Vision
Stereo, the general setup

q one point yields one equation $p^{\prime t} F p=0$ that is linear in the entries of the fundamental matrix F
so, we can actually obtain F without any prior knowledge about camera settings if we have sufficient pairs of corresponding points !!
q F can be computed linearly from 8 pairs of corresponding points, i.e. already from 8 'correspondences’ (not 9 , as this is a homogeneous system and one coefficient can be fixed to value 1 to fix the scale !)
q F being rank 2 yields an additional, but non-linear constraint. Thus, 7 correspondences suffice to non-linearly solve for F

Stereo, the general setup

Remarks :

q Of course, in practice one wants to use as many correspondences as available, e.g. for obtaining a least-squares solution, based on the linear system, followed by a step to impose rank 2.
q Often, F is found through `RANSAC' (RANdom Sample Consensus), a procedure to fend off against correspondences that are wrong ('outliers'). It starts from a randomly drawn subset of correspondences of minimal size (e.g. 8), and then keeps on drawing until a subset is found that yields an F so that many correspondences are seen to obey the epipolar constraint. Consistent correspondences (inliers) are then used to refine the solution for $F{ }^{41}$

Relations between 3 views

one could use more than 2 images, e.g. 3 suppose P projects to p, p, and p "
p " is found at the intersection of epipolar lines :

fails when the epipolar lines coincide

$$
\Rightarrow \quad \text { trifocal constraints }
$$

Computer Vision

Relations between 3 views

Correspondence problem : constraints

Reducing the search space :
n 1. Points on the epipolar line
n 2. Min. and max. depth \Rightarrow line segment
n 3. Preservation of order
n 4. Smoothness of the disparity field

Correspondence problem : methods

1. correlation
q deformations...
q small window \Rightarrow noise!
q large window \Rightarrow bad localisation
2. feature-based
q mainly edges and corners
q sparse depth image
3. regularisation methods

Computer Vision

Stereo, the general setup

3D reconstruction

$$
\begin{aligned}
& P=C+\mu R K^{-1} p \\
& P=C^{\prime}+\mu^{\prime} R^{\prime} K^{\prime-1} p^{\prime}
\end{aligned}
$$

Yields 6 equations in 5 unknowns $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and μ, μ^{\prime}

However, due to noise and errors, the rays may not intersect!
\Rightarrow e.g. use the middle where the rays come closest

Computer

Computer Vision

3D city models - ground level
Mobile mapping example - for measuring

Computer
 3D city models - ground level

Can also be turned into 3D for visualisation, but one needs to stay close to the camera viewpoints.

The example shown is of Quebec

Computer Vision

Computer Vision

Uncalibrated reconstruction

From 2 views...

If the camera translates...
An affine reconstruction can be made A projective reconstruction is always possible (if no pure rot.)

Computer Vision

Uncalibrated reconstruction

From 3 general views taken with the same camera parameters...

Computer Vision

Uncalibrated reconstruction

Computer
Vision

Uncalibrated reconstruction

Computer Vision

Uncalibrated reconstruction - example

Univ. of Leuven

Computer Vision

Shape-from-stills

Input Images shots taken with Canon EOS D60

(Resolution: 6,3 Megapixel)

Computer Shape-from-stills

www.arc3d.be

Webservice,
free for non-commercial use

Computer Vision

3D acquisition taxonomy

Active triangulation

POINT PROJECTED ON OBJECT

THE STEREO CORRESPONDENCE PROBLEM CAN BE MADE TRIVIAL BY PROJECTING A POINT ONTO THE OBJECT SURFACE WITH A LASER. IT IS LIKE REPLACING ONE OF THE STEREO CAMERAS WITH A LASER.

Active triangulation

INTERSECTION LASER RAY AND VIEWING RAY

INTERSECTION LASER RAY AND
, OBJECT SURFACE
,

LASER SPOT SEEN BY THE
CAMERA

Computer Vision

Active triangulation

CAMERA'S CENTER OF PROJECFION

Computer Vision

Active triangulation

LASER

Two lines do normally not intersect... Noise disrupts triangulation

LASER SPOT SEEN BY THE
CAMERA

NO INTERSECTION if SOME ERRORS IN,THE LINE EQS!

Active triangulation

INTERSECTION LASER PLANE \& OBJECT SURFACE
LASER WITH CYLINDRICAL LENSE IN FRONT

INTERSECTION

 LASER PLANE \& VIEWING RAY
POINT ON THE

 LASER LINE SEEN BY THE CAMERACAMERA'S CENTER OF PROJEC〒 ION

Active triangulation

INTERSECTION LASER PLANE \& OBJECT SURFACE
LASER WITH CYLINDRICAL LENSE IN FRONT

A plane and a line do normally intersect...
Noise has little influence on the triangulation

INTERSECTION LASER PLANE \& VIEWING RAY

CAMERA'S CENTER OF PROJECTION

Computer Vision

Active triangulation

Computer Vision

Active triangulation

Triangulation \rightarrow 3D measurements

Computer Vision

Active triangulation

Camera image

Computer Vision

Active triangulation

Computer Vision

Active triangulation

Example 1 Cyberware laser scanners

Desktop model for small objects

Medium-sized objects
Body scanner
Head scanner

Computer Vision

Active triangulation

Example 2 Minolta

Portable desktop model

Computer Vision

3D acquisition taxonomy

patterns of a special shape are projected onto the scene
deformations of the patterns yield information on the shape

Focus is on combining a good resolution with a minimum number of pattern projections

Computer Vision

Serial binary patterns

A sequence of patterns with increasingly fine subdivisions

Yields 2^{n} identifiable lines for only n patterns

Reducing the nmb of projections: colour

Binary patterns

Yields $2^{\text {n }}$ identifiable lines for only n patterns
Using colours, e.g. 3,
Yields $3^{\text {n }}$ identifiable lines for only n patterns

Computer Vision

One-shot implementation

3D from a single frame - KULeuven ‘96:

Computer
Vision

One-shot implementation
KULeuven '81: checkerboard pattern with column code example :

Computer Vision

3D reconstruction for the example

Computer Vision

An application in agriculture

Computer Vision

One-shot 3D acquisition

Leuven ShapeCam

Computer Vision

Shape + texture often needed

Higher resolution
Texture is also extracted

Computer
Vision

James Bond
Die another day

Lara Croft

Thomb
Raider

Computer Vision

Active triangulation

Recent, commercial example

KINECT

for 0 recurna
Kinect 3D camera, affordable and compact solution by Microsoft.

Projects a 2D point pattern in the NIR, to make it invisible to the human eye

Computer

Vision

Kinect: 9×9 patches with locally unique code

Computer
Vision

Kinect as one-shot, low-cost scanner

Excerpt from the dense NIR dot pattern:

http://research.microsoft.com/apps/video/default.aspx? 15

Computer
Vision

Face animation - input

Computer Vision

Face animation - replay + effects

Computer Vision

4D: Facial motion capture

motion capture for League of Extraordinary Gentlemen

Computer
Vision

Facial motion capture

(2) COMPUTERCAFE

LC015 Eyetronics
1/ 291
$03 / 11 / 2003$

Computer Vision

Phase shift

color wheel

Computer Vision

Phase shift

$$
\begin{aligned}
& I_{r}=A+R \cos (\phi-\theta) \\
& I_{g}=A+R \cos (\phi) \\
& I_{b}=A+R \cos (\phi+\theta)
\end{aligned}
$$

1. detect phase from 3 subsequently projected cosine patterns, shifted over 120 degrees
2. unwrap the phases / additional stereo
3. texture is obtained by summing the 3 images / color camera w. slower integration
$\begin{aligned} & \text { Computer } \\ & \text { Vision }\end{aligned}$
$A=\frac{I_{r}+I_{g}+I_{b}}{3}$
$\phi=\arctan \left(\tan \left(\frac{\theta}{2}\right) \frac{I_{r}-I_{b}}{2 I_{g}-I_{r}-I_{b}}\right)$

Vision

4D acquisition

Motion retargetting, from 3D phase shift scans

Computer Vision

3D acquisition taxonomy

Time-of-flight

measurement of the time a modulated light signal needs to travel before returning to the sensor
this time is proportional to the distance
waves:

1. radar
2. sonar
3. optical radar
low freq. electromagnetic acoustic waves
optical waves
working principles :
4. pulsed
5. phase shifts

Computer Vision

Time-of-flight (optical radar /NIR)
Example 1: Cyrax

Example 2: Riegl

Vision

Time-of-flight: example

Cyrax ${ }^{\text {"w }}$

3D Laser Mapping

System

Computer Vision

Cyrax

Accurate, detailed, fast measuring

Integrated modeling

Cyrax

Computer Vision

Pulsed laser (time-of-flight)
No reflectors needed

2mm-6mm accuracy

Distance $=C \times \Delta T \div 2$

Computer Vision

Laser sweeps over surface

800 pts/sec

2mm min pt-to-pt spacing

$40^{\circ} \times 40^{\circ}$

Field-of-view (max)

Computer Vision

Up to 100m range (50m rec)

Eye-safe Class 2

Computer Vision

Cyrax is also a visualization tool

Cyrax detects the intensity of each reflected laser pulse and colors it

Computer Vision

Step 1:

Target the structure

Scanner Settings

Minimize Spacing

$\left[\begin{array}{c}\text { Plane Offset Distance } \\ 200 \\ \mathrm{ft} \\ \hline\end{array}\right.$
$\left[\begin{array}{r}\text { Spacing } \\ \text { Horizontal } \\ \text { Vertical } \\ \sqrt{0.2649} \\ \hline 0.08333\end{array} \mathrm{ft}\right.$

Number of Points
Horizontal $\sqrt[500]{ }$
Vertical
500
Scan

Will scan 602000 points. Drag out target region with left mouse, or point with right mouse to set t

Computer
Vision

Step 2:
Scan the structure

Computer
Vision

Step 3: Color the points

Computer
Vision

Step 4:
Model fitting in-the-field

Computer Vision

Result

Computer Vision

Project: As-built of

Chevron hydrocarbon plant

- 400 ’x500' area
- 10 vessels; 5 pumps
- 6,000 objects
- 81 scans from 30 tripod locations
- Cyrax field time $=50 \mathrm{hrs}$

Computer Vision

Added Value

 Benefits
Measuring \& modeling

- Higher accuracy
- Fewer construction errors
- 6 week schedule savings

Computer
Vision

Application Modeling movie sets

Computer Vision

Lidar data with Riegl LMS-Z390i

courtesy of RWTH Aachen, L. Kobbelt et al.

Computer
Vision

Comparison Lidar - passive

3-D Reconstruction based on

Multi-View Stereo

LIDAR Measurements

Computer

 Vision
3D acquisition taxonomy

Computer
 Vision
 Shape-from-texture

assumes a slanted and tilted surface to have a homogeneous texture
inhomogeneity is regarded as the result of projection
e.g. anisotropy in the statistics of edge orientations

\Downarrow

orientations deprojecting to maximally isotropic texture

Computer
Vision

Computer Vision

3D acquisition taxonomy

Shape-from-contour

makes assumptions about contour shape

E.g. the maximization of area over perimeter squared (compactness)

E.g. assumption of symmetry

Symmetric contours \downarrow surface of revolution

Computer
Vision

Shape-from-contour

Computer Vision

3D acquisition taxonomy

Computer Vision

Shape-from-silhouettes

Computer

Shape from silhouettes - uncalibrated

 Vision
tracking of turntable rotation

- volumetric modeling from silhouettes
- triangular textured surface mesh

Computer Vision

Shape from silhouettes - uncalibrated
tracking of turntable rotation

- volumetric modeling from silhouettes
- triangular textured surface mesh

Computer

Shape from silhouettes - uncalibrated

\square
VRML model

Computer

Vision

Computer
 Outdoor shape-from-silhouettes

Vision

Computer

Vision

Outdoor shape-from-silhouettes

!
\Rightarrow

Computer Vision

Outdoor shape-from-silhouettes

E雷

Computer Vision

3D acquisition taxonomy

Computer Vision

REAL-TIME FOCUS RANGE SENSOR

SHQEE K. MAYAR
Wasahigo Watamaze
Minori Nocuchi
COLUMAIA UNIVERSITY

Computer

 Vision
3D acquisition taxonomy

Shape-from-shading

Uses directional lighting, often with known direction
local intensity is brought into correspondence with orientation via reflectance maps
orientation of an isolated patch cannot be derived uniquely
extra assumptions on surface smoothness and known normals at the rim

Computer Vision

3D acquisition taxonomy

Photometric stereo

constraint propagation eliminated by using light from different directions
simultaneously when the light sources are given different colours

Computer Vision
 Mini-dome for photometric stereo

Instead of working with multi-directional light applied simultaneously with the colour trick, one can also project from many directions in sequence...

Computer Vision

Mini-dome for photometric stereo

KATHOLIEKE UNIVERSITEIT

Computer Vision
 Mini-dome for photometric stereo

Example for tablet with first world map known,

 an exhibit at the British Museum:http://homes.esat.kuleuven.be/~mproesma/mptmp/cuneiform

Computer Vision

Mini-dome for photometric stereo

Computer
 3D and recognition integrated

 Vision