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ABSTRACT

Interaction with virtual deformable models is common in several
haptic contexts, such as in medical training simulators. This paper
presents a methodological procedure for the creation of such virtual
models from their real-life counterparts. Both the surface geometry
and the elastic parametrization of an object are reconstructed from
position/force readings during an operator-assisted exploration of
the object. A 3D mesh model is then generated from the surface
contact points. The internal elastic modulus is found using the 3D
finite element method. This modeling method is compared with
two common 1D elastic models, namely Kelvin-Voigt and Hunt-
Crossley. Results using three deformable homogeneous silicone
samples show successful geometry reconstruction. 1D model pa-
rameterizations exhibit high variation dependent on geometry and
contact location. In contrast, elastic modulus reconstruction yields
a global model parameterization independent of geometry. Elastic
moduli estimated in experiments correlated with their known val-
ues, and were shown to be reproducible among samples with differ-
ent geometries.

1 INTRODUCTION

For the haptic rendering of real-life objects in virtual environments,
haptic modeling has always been an active interest of research. Vir-
tual deformable models are an essential part of many haptic appli-
cations, consequently they have been widely studied for model gen-
eration. Because the extent of an object is crucial to identify con-
tacts in virtual rendering, geometric modeling does often go hand
in hand with haptic modeling in this context. Therefore, the term
modeling is commonly used in relation to either the geometry/shape
or (visco)elastic parameterization of an object, both of which are
indeed required for a realistic haptic simulation. In this work, we
address both aspects of modeling in an integrated framework.

There are commonly two modeling approaches: manual and au-
tomatic reconstruction of objects. Here, manual refers to defining
the object geometry implicitly as a combination of geometric prim-
itives, such as planes, cubes, and spheres. Also, prior knowledge
on the haptic characteristics of the object is required for haptic ren-
dering. Then, one can describe the virtual object and its contact
behaviour; e.g., for a virtual half-sphere, applying an outward force
as a known (assumed) function of penetration depth can simulate
one common type of penetration-dependent elastic interaction with
this particular geometry. Programming such models manually for
real-life complex objects can be a time-consuming task and often
is not straight-forward. Moreover, interaction response from a real
object is in general not merely a function of penetration depth as
in the simple example above, but is often a complex outcome of its
entire shape, material properties, and boundary constraints (how it
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is fixated in space, such as standing on a tabletop). Consequently,
except in simple interaction scenarios, virtual model generation re-
lies on automatic data-driven methods. 3D scanning, such as using
laser or visible light, is the most popular data acquisition method.
However, this method requires additional equipment. Also, when
haptic modeling is performed in a different coordinate frame than
shape modeling (for instance, laser surface scanning followed by
haptic/indentation data collection), this approach involves the post-
registration of scanned geometric models to the haptic coordinate
frame for correctly projecting the haptic model data onto the geo-
metric model. If haptic rendering is to be performed on a differ-
ent device/location, such model needs to be eventually brought into
the rendering coordinate frame. These all hinder the modeling-to-
rendering pipeline greatly in practical scenarios. Any registration
errors in this pipeline, despite common approaches such as track-
ing with markers, will generate inconsistent haptic rendering. There
is an evident benefit from simpler, robust techniques for model ac-
quisition. To avoid additional equipment and complexity, we ex-
ploit the haptic device itself in entire model generation. This elimi-
nates the need for registration, integrating both geometric and elas-
tic modeling aspects into a single procedure.

Several touch-based solutions for collecting spatial points for
geometry reconstruction were proposed in the literature, e.g. [23]
and the commercial products MicroScribe1, Romer2, Nikon3, etc.
There have also been studies combining visual scanning for geom-
etry modeling and haptic probing for viscoelastic modeling [16].
In this paper, we present the concurrent generation of both models
for deformable media from haptic interaction data during manual
exploration of the object to be modeled. For shape generation, we
first identify the contact points and then employ a sparse point sur-
face reconstruction method. The convex hull of Delaunay triangu-
lation provides a robust and computationally-efficient technique for
surface extraction from our convex synthetic models [1].

Due to the deformable characteristic of soft tissue, deformable
modeling has been a major focus for medical simulations [2, 21].
To compute indentation forces in haptics, due to real-time render-
ing constraints, it has been proposed to use 1D viscoelastic approx-
imations, variations of spring-damper models such as Kelvin-Voigt,
Maxwell, and Hunt-Crossley models [9]. There have also been
studies on experimental validation of such different parameteriza-
tions [22]. These models are effective for accurately describing the
contact response at a particular location. Nevertheless, they are not
suitable for simulating complex object behaviour in virtual envi-
ronments; because such 1D model parameters do not indicate any
physical material property, but they are instead an aggregate out-
come of the shape, size, and placement of the object, together with
its physical properties. Then, the modeled parameter is also a func-
tion of spatial contact location, and not only an internal change of
underlying material physics. For instance, if a standing deformable
object is probed laterally near its base and further above at the top,
different force-displacement profiles will be observed, even when
the material is homogeneous, due to the former interaction being

1http://www.emicroscribe.com/
2http://us.romer.com/
3http://www.nikonmetrology.com/



closer to its fixed (zero-displacement) base. To cope with this, so-
phisticated data-driven spatial model parameterizations have been
proposed [10], however those rely on a large number of collected
samples and a proper interpolation scheme for rendering.

An alternative approach is to use continuum mechanics with an
inherent geometric representation, which is often in the form of a
mesh – a spatial discretization of the continuum. Several continuum
mechanics representations for tissue have been proposed and stud-
ied in the literature [7]. The Finite Element Method (FEM) is a pop-
ular technique particularly in medical applications, due to its abil-
ity to model complex shapes and interactions. FEM can inherently
accommodate for geometry and boundary conditions, the relative
locations of which with respect to an interaction point are known
to significantly affect the nature of deformation [14]. Consider-
ing soft tissue deformation in medical simulations, such boundary
constraints are often the bones, as they are relatively rigid and are
grounded through the skeletal system, e.g., to the patient’s bed. Ac-
cordingly, reconstructing the location of such fixed constraints is an
essential aspect of geometric model generation. These constraints
together with the elastic properties of the object and its overall ge-
ometry gives rise to the observed kinesthetic forces when the object
is probed. Such probing is indeed commonly utilized by medical
practitioners to resolve for the underlying elasticity, as in palpation
examinations of breast tumors, prostate cancer, and liver cirrhosis.

Elastography, which is the viscoelastic parameter identification
of soft tissues, is an active area of research [5, 6, 11, 24]. Com-
mon techniques rely on imaging dense internal tissue motion us-
ing MR or ultrasound. Indeed, elastic parameter estimation from
force/displacement readings with single-point interaction is not
straightforward [15]. We demonstrate this for homogeneous objects
when the entire object geometry can also be estimated concurrently.

Several sophisticated nonlinear and dynamic FEM methods have
been investigated in the literature [5, 6, 12, 18, 20]. A novel FEM
reconstruction method is not the focus of this paper. We accord-
ingly use a linear isotropic model that is fast both for parameter
reconstructions and also for potential subsequent haptic rendering
using the same model with estimated parameters. Viscoelastic tis-
sue characterization was proposed in [20] using resonant ampli-
tude/frequency shift of a torsional oscillator coupled to skin. How-
ever, this requires specialized hardware and only the superficial tis-
sue layer can be measured. In [3], surface points tracked by cam-
eras were used for modeling deformable objects through interpo-
lations in the strain-space of an underlying assumed FEM model.
Time-varying surface profiles during aspiration of tissue were uti-
lized in [12] for viscoelastic characterization. In contrast to such
camera-based surface tracking approaches, we herein estimate pa-
rameters merely from the displacement and force at a single contact.
Similarly, a robotic indenter was used in [18] for viscoelastic tissue
characterization from time-series force readings; nevertheless, this
method considers only local deformations and it does not address
geometric model generation.

In this work, we present the construction of geometric and haptic
models from several single-contact interactions. We demonstrate
the use of FEM for elastic modulus estimation with homogeneous
objects. We also identify interaction parameters from 1D viscoelas-
tic contact models, and compare those with elastic moduli while in-
dicating the separate natures of these two modeling approaches. A
discussion is provided at the end.

2 METHODS

We first introduce our naming convention for the object geometry,
which can be followed in the cross-sectional view of a synthetic
model in Fig. 1(a). The surface S defines the interface where one
can interact with the object. The boundary B is the side of the
object that is not directly visible and/or be interacted with. The
boundary also fixates the deformable object in space. The mesh M

(a) (b)

Figure 1: (a) A 2D sketch illustrating the contact points on a surface
and an FEM mesh model of the object. (b) Our experimental setup.

is an internal spatial discretization of the object into geometrical
primitives such as tetrahedra and hexahedra.

For visual rendering, contact handling and 1D viscoelastic mod-
els, the outer surface S is the only relevant geometry component
and hence shape modeling in those contexts refers to the recov-
ery of that surface alone. Nevertheless, with continuum mechanics
a boundary definition is required to determine contact behaviour.
FEM also requires a mesh discretization of the object volume to in-
tegrate such continuum effects over simplex geometric primitives.
We construct the geometric and the elastic models through manual
haptic exploration of the object. We use a haptic device for this
purpose while recording positions and forces at the device tip. We
later process this data offline for both geometric and haptic model
generation. In this paper, we use a Sensable Phantom 1.5 device in-
strumented with an ATI Nano17 force sensor. Our data acquisition
setup during one sample palpation is seen in Fig. 1(b).

Our haptic exploration involves two phases: (I) is to identify the
object extent and the boundary B, and (II) is to identify the surface
S and the elastic parameterization. Since B is not visible or accessi-
ble, we infer it from its perimeter around the object shown with the
arrows in the 2D model in Fig. 1(a). In 3D, this is the circumference
around the object at its fixed plane/surface. We thus first simply de-
lineate the object around its base with the haptic tool. An analogy
for a breast palpation examination, in which the ribs are the near-
est bones enforcing boundary constraints, would be the tracking of
the ribs around the breast with the tool. Subsequently, the object
surface is probed (palpated) at multiple locations with the haptic
device. From palpations, first individual contacts are isolated using
a finite-state machine contact model. From initial contact points,
the surface S is approximated. From B and S, which together indi-
cate the object outline, a mesh M is then generated for the object.

2.1 Boundary Approximation and Contact Detection

The acquired forces and displacements are first zero-phase low-pass
filtered to remove high-frequency noise in the data. Fig. 2 shows
the force magnitude profile from a sample experiment. The first
part of the interaction, phase I, is the fixed boundary exploration
(in our case the rigid table surface) and the latter peaks are the pal-
pations in phase II. Once the contact in phase I is easily extracted
automatically, the circumference of the object is identified from the
path of the 3D tool position in this phase. This is shown with the
circular curve for the half-sphere model in Fig. 3(a). The curve is
then down-sampled using farthest-point sampling, which starts by
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Figure 3: Geometric model generation. (a) Detected contact points (+) and the object base circumference, marked with circles after down-
sampling. (b) Surface of the resulting mesh, also showing the zero-displacement FEM nodes (∗). The FEM nodes (◦) closest to each contact
are used for deformation simulation of that particular contact. (c) Displacement-force profiles of palpations on a homogeneous block-shaped
sample. (d) Distribution of identified parameters for the Kelvin-Voigt and Hunt-Crossley models for a cylindrical elastic sample.
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Boundary Exploration Palpations

Figure 2: Sample force magnitude profile with detected contacts (◦)
and peak interaction forces (+).

picking a random location on the tool path and adding it to a set of
sampled-points set. Then, at every iteration, the distances from all
points to this sampled set are computed and the furthest path point
is chosen to be added to the set of sampled points. This is repeated
until no part of the path is further to the sampled points than a pre-
defined threshold d. Let PB be the 3D locations of the resulting
sampled points as shown with the circles on the curve in Fig. 3(a).

The instants of palpations in phase II of an interaction are de-
tected automatically from the force magnitude profile using a finite
state machine. The contact state is activated at a force threshold of
τ . In order to detect the initial contact, the first time instant that the
force started increasing is then backtracked. Sample detected in-
stants are shown in Fig. 2. The contact state is deactivated when the
force magnitude is negligible. Let PS be the 3D locations of initial
contacts shown with plus signs (+) in Fig. 3(a).

2.2 Surface Reconstruction and Volumetric Meshing

The set of points PB ∪PS = P form a 3D sparse sampling of the
object outline, and is used used for surface reconstruction to deter-
mine an approximate object shape. For a convex object, the con-
vex hull of P gives the surface of such object. This can be com-
puted as a byproduct of the Delaunay triangulation of a 3D point
cloud [1]. Then, the surface S is extracted in the form of triangu-
lar facets. These convex-hull extracted surface triangles are often
of poor quality to be used in an FEM mesh. The quality of an
element (triangle/tetrahedron) is measured by certain aspect ratio
criteria [19]. Common meshing algorithms do not change explicit

surfaces that are given as inputs [8]. Thus, to avoid such degenerate
faces in the mesh, we go through a volumetric (voxel) representa-
tion of the object. To mesh the volume, we use the technique of
Boissonnat and Oudot [4] implemented in the Computational Ge-
ometry Algorithms Library (CGAL)4. To that end, we first dis-
cretize the bounding box of S on a 3D Cartesian grid, each voxel
of which is labeled as being inside/outside of this surface. Subse-
quently, CGAL meshes this label grid into a tetrahedral discretiza-
tion. It generates uniform tetrahedra that are of given size ℓ and that
are bounded by a given radius-edge ratio ρ while approximating a
given surface with a distance error σ . The surface of a sample mesh
is seen in Fig. 3(b). Finally, the contact locations PS are cast onto
the nearest mesh nodes for performing the FEM analysis. These are
circled in Fig. 3(b) with numbers indicating their palpation order.

2.3 Uniaxial Elastic Modeling

For viscoelastic modeling, we compare two popular 1D models,
namely Kelvin-Voigt and Hunt-Crossley, with the 3D FEM model.
For the 1D models, first the displacement-force profile of each pal-
pation is extracted; see Fig. 3(c) for an example. The Kelvin-Voigt
model explains the relationship between displacement u and force
f with two parameters as follows:

f = kKV u+bKV u̇ (1)

whereas the Hunt-Crossley model uses three parameters:

f = kHC ur +bHC ur u̇ (2)

where k and b are, respectively, the stiffness and the damping terms.
Then, for a given palpation (given set of multiple u and f pairs,
denoted by the vectors u and f), Kelvin-Voigt parameters are given
by the solution of the following least-squares problem:

argmin
kKV,bKV

∣

∣

∣
[kKV bKV][u u̇]T − f

∣

∣

∣

2
. (3)

It was shown recently in [9] that the Hunt-Crossley parameters can
also be identified similarly. To that end, an assumption is made that
the interaction speed is small relative to the stiffness-to-damping

ratio, i.e. |u̇| < 0.1kHC

bHC
. This is reasonable for manual interaction

velocities, and also because the damping in our models are minus-
cule as shown later. The logarithm of (2) aggregated for the full
palpation extent yields the following least-squares problem [9]:

argmin
c1,c2,c3

∣

∣

∣
[c1 c2 c3][1 u̇ ln(u)]T − ln(f)

∣

∣

∣

2
(4)

4http://www.cgal.org/



from which the parameters can be extracted subsequently such that
kHC = ec1 , bHC = ec1 c2, and r = c3 .

Distribution of parameters identified as above is given
in Fig. 3(d) for a cylindrical phantom. Damping effect is seen to
be negligible for the materials we use. We thus also use the two
following modified models without damping:

f = kV u , (5)

f = kC ur . (6)

We identify these new parameters similarly from experimental data.

2.4 3D FEM Modeling

To accommodate for complex 3D geometries, we also use the FEM
with a linear stress-strain Hookean model. For a mesh with n nodes,
FEM relates the nodal displacements u = [ux

1 u
y
1 uz

1 ux
2 . . .u

z
n]

T to cor-
responding internal nodal forces f through a 3n×3n sparse stiffness
matrix as K u = f. Considering the negligible viscous effects ob-
served for our model above in Fig. 3(d), we omit damping here.
Without loss of generality, we assume a node numbering (permu-
tation) with the nodes on boundary B listed at the end. Since the
displacement on B is always zero, then K can be decomposed as:

[

K11 K12

K21 K22

][

u
1

0

]

=

[

f
1

f
2

]

(7)

K11
u

1 = f
1 (8)

K21
u

1 = f
2 . (9)

The forces on the right-hand-side describe the external forces on
the model, whereas the left-hand-side represent the internal body
forces. While the boundary forces f

2 are not known, f
1 is known at

all times during a palpation. The three rows of f
1 corresponding to

the force on the palpated node are read from the force sensor. All
other f

1 components are zero as all other model nodes are free in
space, i.e. f 1=[0 0 · · ·0 f x f y f z 0 · · ·0]T. Accordingly, (8) is used to

reconstruct elasticity [6]. For clarity, the superscripts 11 and 1 are
dropped throughout the rest of this section.

K is built by the superposition of individual element stiffness ma-
trices, which are for instance 12×12 for the four-node tetrahedral
elements. Each element stiffness matrix Ke is an integration of the
continuum Hookean model inside that element. Consequently, Ke is
a function of that element geometry, spatial interpolation used, and
the element elasticity. The elasticity is described by the Young’s
modulus (e) and the Poisson’s ratio (η), which explain the elastic
and the incompressibility components, respectively.

Human soft tissue is known to be nearly incompressible, due to
its high water content. Then, for FEM parameter identification, typ-
ically a constant high η is assumed and only the elastic modulus e
is sought. Fortunately, e appears linearly in element stiffness matri-
ces Ke [25]. Then, the vector of all moduli e can be separated as a
linear multiplier in (8) as follows:

KG e u = f (10)

where KG is a tensor for stiffness that depends solely on the geom-
etry, interpolation, and η , where the elastic moduli e are decoupled.
It is basically composed of the matrices Ke before having multiplied
with the Young’s modulus.

Given dense displacement data u such as from medical imaging
modalities as ultrasound or MR, it is possible to identify individual
element parameters from (10) using static [11] or dynamic excita-
tions [6]. However, since we only observe the displacement at the
contact point itself, there is no straight-forward solution of recon-
structing arbitrary elasticity distributions. Nevertheless, (10) can be
solved for homogeneous models, for which there is a single modu-
lus e to identify [17]. This then yields to:

KG (e u) = f (11)

Table 1: Silicone samples used in the experiments.

Known Estimated

Sample Geometry e [kPa] e [kPa]

#1 cylinder of 40 mm radius and 80 mm height 29 28.73

#2 square block of 105×105×47 mm3 16 10.73

#3 (near) half-sphere of 60 mm radius and 55 mm height 16 11.31

with KG is a matrix and e is a single value. Then, for a single palpa-
tion instance i using the FEM, the following least-squares problem

gives a displacement prediction u
pred
i at all nodes from the 3×1

force vector f meas
i measured at the tooltip for that palpation:

u
pred
i = argmin

u
|KG u− f

meas
i |2 . (12)

The three axial components of u
pred
i that correspond to the pal-

pated node i is the FEM predicted nodal displacement u
pred
i for that

palpation. Let 3×p matrix Upred be the collocation of such dis-
placement predictions from all palpations p of a sample, and Umeas

be the corresponding measured displacements at those palpation in-
stances. Then, from (11), eUmeas =Upred should hold. Thus, an e
that fits all measurements in a least-square sense is found as fol-
lows:

e =Upred UmeasT
(

UmeasUmeasT
)−1

. (13)

In order to assess the sensitivity of such modulus estimation to
the number of observed palpations in our results, we also estimated
a separate modulus ei for each individual palpation i using solely
the measured and predicted displacements from that particular pal-

pation, ei = u
pred
i u

meas
i

T
(

u
meas
i u

meas
i

T
)−1

.

3 RESULTS

We experimented with three different homogeneous silicone sam-
ples listed in Table 1. Haptic exploration of each sample took 1
to 2 minutes, generating 35 to 100 distinct contacts. The shapes
were generated as described in Section 2.2. For contact detection
and mesh generation, the parameters were set empirically such that
the contact force threshold τ=1 N, the mesh size ℓ=10 mm, tetrahe-
dra radius-edge ratio ρ=2, and the surface approximation threshold
σ=2 mm. In FEM reconstruction, a Poisson’s ratio η of 0.49 was
used to achieve near-incompressibility. For each palpation, the data
at 10 mm indentation was used for reconstruction by FEM in or-
der to minimize noise in readings. The FEM solver was written in
Matlab and was validated against Ansys results.

Damping was negligible for all samples, similarly to the cylinder
sample shown in Fig. 3(d). Accordingly, parameters identified with
no damping assumption are reported here. These include kV of the
modified Kelvin-Voigt model in (5) and kC and r of the modified
Hunt-Crossley model in (6); the distributions of which are shown
for each palpation, respectively in Figs. 4(a) and 4(b). The spa-
tial distribution of kV is shown for sample #1 in Fig. 5(top) and for
sample #2 in Fig. 5(middle). Note that the identified parameter is
strongly dependent on the location of interaction. For instance, on
the side of the cylindrical sample #1, the model indicates the “stiff-
ness” getting lower as palpation point is further from the ground.
This is obviously merely a side-effect of the geometry, and the fact
that the cylinder is grounded (fixed in space) at its base. This ge-
ometry dependence of kV is shown in Fig. 5(bottom-left).

The same geometry-dependent effect is also observed with the
Hunt-Crossley model. Since it has two parameters kC and r that
both contribute to resultant force, this effect is difficult to demon-
strate in the combined space of the two (especially, since r has a
nonlinear effect). We thus used the average r for each sample shown



0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

#1 #2 #3
Sample

kV

(a)

0.05

0.1

0.15

0.2

0.25

0.3

#1 #2 #3
Sample

kC

1.1

1.2

1.3

1.4

1.5

1.6

1.7

#1 #2 #3
Sample

r

(b)

0.05

0.1

0.15

0.2

0.25

0.3

#1 #2 #3
Sample

kH

(c)

Figure 4: Distributions of estimated 1D model parameters using
negligible damping assumption with the following models (a) Kelvin-
Voigt, (b) Hunt-Crossley, and (c) Hunt-Crossley parameter re-
identified at a fixed r per model (average from (b) was used).

in Fig. 4(b) as a constant parameter, to re-identify the elastic Hunt-
Crossley component in (6), which we now call kH to distinguish. It
is plotted similarly in Fig. 5(bottom-center), exhibiting strong cor-
relation with the palpated height.

The moduli identified for each homogeneous sample from (13)
are given in Table 1. As seen, these are relatively close to the
known sample construction values as the ground-truth. It is im-
portant to note that none of the 1D models above can produce such
a physically-meaningful global model parameter that can be com-
pared to a ground-truth fundamental material property. To show the
sensitivity of moduli estimation to palpations performed per point,
we also report the distribution of moduli in Fig. 6(a), if they were to
be estimated separately for each palpation. In this plot, the globally-
identified sample modulus is marked with ∗.

In Fig. 6(b), spatial distributions of individual modulus estima-
tions are shown for two samples on their reconstructed surfaces. As
seen in these figures, in contrast to 1D model parameters, the elastic
moduli estimated by the FEM do not have a systematic dependence
on palpation location. This is also observed in Fig. 5(bottom-right),
where modulus-per-palpation is plotted against the contact point
distance from the ground for the cylindrical sample #1.

Our implementation in Matlab, with the meshing performed by a
compiled executable, runs offline in an automatic pipelined frame-
work and can generate the entire model under 45 s on an Intel
Core i7 2.66 GHz processor. For all models, extraction contacts
from measurements took less than 10 s, identifying all 1D model
parameters took less than 0.5 s, whereas the FEM modulus estima-
tion took under 3 s including stiffness matrix KG formation. The
remaining time was spent on mesh generation, in particular label-
ing the discretized Cartesian grid inside the surface S.

4 DISCUSSION

Our most notable result is the consistency and repeatability of the
FEM estimated moduli. In particular, it is seen in Fig. 6(a) that
the moduli of samples #2 and #3 were estimated very closely, even
though those samples have significantly different geometry. Sample
#1 modulus was identified correctly as being substantially higher
than the other two. It is also worthwhile to note that none of the
individual modulus estimations of the stiffer sample #1 was lower
than any of the individual estimations of samples #2 and #3, which
shows the robustness of the estimations. This clear separation be-
tween the first and the other two models is not observed with any of
the other 1D model parameterizations.

Individual per-palpation modulus estimations have been pre-
sented in this paper merely to demonstrate any variability they
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Figure 5: Spatial distribution of the identified kV indicating its geome-
try dependence: (top) Sample #1 side and top view; (middle) sample
#2 isometric view; and (bottom) parameters kV , kH , and per-palpation
modulus e identified on the side of sample #1 as a function of height.
Each surface was rendered using a radial-basis function interpolation
of the estimated parameter values given at known palpation points.

may contain, which may occur due to noise in data collection and
geometric model generation. Our proposed method indeed is to
identify a common global modulus from all palpations together as
presented in the methodology section. This enjoys the benefit of
FEM reconstruction being a model-based approach by fitting sev-
eral (geometry-compensated) data to a single model space. In con-
trast, no global model can be assumed with 1D techniques.

For surface extraction, we used convex hull since our synthetic
models were convex in shape. Without any prior on convexity, one
can resort to the more sophisticated Poisson surface reconstruction.
From the point cloud P and the surface normals at each point, this
method extracts the surface from an implicit surface representation
generated by solving Poisson’s equation [13]. Our preliminary re-
sults show that the contact normals can be approximated from pal-
pations, such as the force direction at initial contact or the displace-
ment at maximum indentation. Poisson reconstruction is also ob-
served to be robust to noise in such normal estimation.

In order to demonstrate our modeling technique, we have used a
haptic device for data collection since we readily had access to one
in our group. Nevertheless, in principle any tool with integrated
force and position sensing capabilities could be used.

The geometry reconstruction presented in this paper is not only
required for virtual modeling, such as contact detection and graph-
ical representation during rendering, but it is also an essential com-
ponent for FEM modeling. Without knowing the extent of the ob-
ject and its boundary constraints with reasonable certainty, FEM
parameters could not be estimated reliably. Uniaxial approaches,
however, do not require the geometry for force modeling. This has
impacts on possible strategies for haptic rendering. Using 1D mod-
els, the interaction response in-between acquired contact points are
typically interpolated. Although sophisticated interpolation meth-
ods exist, this still requires a relatively dense data collection as



(a) (b)

Figure 6: (a) Distributions of individual moduli estimations for each
palpation, with ∗ marking the global parameter estimation. (b) Ge-
ometry reconstructions from samples #1 [top] and #2 [bottom] also
showing spatial modulus distribution when e is identified separately
for each palpation.

such models lose their predictive power away from the collected
data points. For instance, when rendering force feedback from the
cylinder sample #1 shown in Fig. 5(top-right), if no data had been
collected near the center of its top surface, any interpolation using
the data near the circumference would yield a twice softer than ex-
pected interaction. In contrast, haptic rendering using the FEM is
inherently defined by (11). Once modulus is estimated, (11) can be
solved at the time of rendering using the estimated modulus e and
the palpation u to find the force feedback f . Although this can be
an involved task to achieve in real-time, as long as the geometry is
well-defined, interactions for a wide range of contact natures can
be simulated. For instance, simulating multi-contact with FEM is
then no different than single-contact, although this is not straight-
forward using 1D contact models. Haptic augmentation can also
be handled implicitly by modifying the spatial FEM discretization.
For instance, a stiffer inclusion can be simulated simply by chang-
ing the internal mesh and increasing the modulus of that location
to desired value. In contrast, augmenting 1D models or their in-
terpolations requires heuristic treatments. Concurrent generation of
geometric and haptic models is not only relevant for virtual environ-
ments, but it is also essential in robotics, where both the geometry
and the contact properties of an object need to be identified on-the-
fly before a full-interaction such as grabbing. It can furthermore be
beneficial as a quantitative diagnosis tool, e.g. for medical palpa-
tion examinations.

5 CONCLUSIONS

In this paper, we have presented a haptic modeling technique to re-
construct both the geometry and the deformable parameterizations
of objects. We have compared 1D models and the 3D FEM for
elastic modeling. The former are fast and simple, however, yield
geometry-dependent results. The latter takes the geometry and the
constraints into account, and solves for the elastic modulus, which
is an absolute global elasticity measure that can be validated with
object construction parameters and by independent indentation ex-
periments. FEM modulus estimation has been shown to be repeat-
able within the same sample and among differently-shaped samples
of the same material. Moduli were also significantly distinctive be-
tween samples made of different material. In the future, we will
investigate other FEM formulations for parameter reconstruction.
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