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Abstract

Tissue deformation is common during many medical interventions. An accurate simulation of
these procedures necessitates accounting for tissue displacements by modeling tissue deforma-
tion and medical tool interaction. In minimally-invasive procedures, due to lack of visibility,
physicians rely on haptic feedback and medical imaging to assess the immediate anatomical
configuration and relative medical tool position. These procedures are often difficult to learn
and therefore extensive training becomes essential.

Computerized training systems offer an alternative to cadavers and training on patients.
To accurately model the tissue deformation, most such systems require a mesh representation
of the anatomy. To replicate the medical imaging feedback offered during procedures, a real-
istic image simulation approach is also needed. In this thesis, a novel energy-based meshing
technique taking medical images and producing desirable meshes for the finite element method
is introduced. This method employs an image-based discretization energy combined with a
geometry-based element quality energy. The former promotes each mesh element to cover sim-
ilar intensity image regions, while the latter ensures the element suitability for finite element
simulation. A method that can mimic realistic B-mode ultrasound images under deformation
is also presented in this thesis. This method first maps the pixels of an image from a deformed
mesh configuration back to the nominal configuration, and then interpolates them in a B-mode
voxel volume reconstructed a priori.

Needle insertion is involved in several medical procedures. These percutaneous procedures
will benefit significantly from advances in simulating needle-tissue interaction, for which a 3D
model is proposed in this thesis. Simulating needle flexibility is achieved fast and accurately
using a novel approach employing torsional springs. The needle insertion simulation with
haptic feedback is presented for a training scenario for prostate brachytherapy, where simulated
ultrasound images coupled with deformation are also displayed. A scheme to generate patient
models for this system is also devised using both the conventional meshing techniques in the
literature and the proposed variational meshing method.
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Chapter 1

Introduction

1.1 Motivation

Tissue deformation is common during many medical interventions. An accurate simulation
of these interventions necessitates accounting for these tissue displacements by modeling tis-
sue deformation and medical tools. Minimally-invasive procedures are appealing due to their
reduced complications, however it is often not possible to observe tissue deformation during
such procedures due to limited visual feedback. Therefore, in order to assess the immedi-
ate anatomical configuration and relative medical tool position, the performing physician has
to rely on the haptic1 feedback via the tool and/or any intra-operative medical imaging, if
available. These limitations make such procedures difficult to learn and perform, and training
systems that replicate the procedural setup become essential as teaching and rehearsal tools.
Such systems are also beneficial in teaching scenarios that are rarely encountered in practice.

The development of the techniques in this thesis was mainly motivated by the prostate
brachytherapy procedure, which is a treatment method for prostate cancer involving needle
insertions. It is a typical minimally-invasive procedure, on which substantial recent research
has focused and demonstrated potential for improving the current training and treatment
planning methods. The needs and difficulties of this procedure are common to various other
minimally-invasive (in particular, percutaneous) procedures, and consequently several tech-
niques presented in this thesis are applicable to different medical procedures as well.

Intra-operative medical imaging modalities are the eyes of a physician during a minimally-
invasive procedure such as biopsy. Therefore, a simulation system requires the synthesis of such
images as they would appear in an actual procedure. These images are not static, but change
during the course of the procedure as the tissue deforms due to tool interactions. A technique
to render images matching these deformations is necessary. Furthermore, considering real-time
imaging modalities, e.g. ultrasound, such rendering technique also has to perform sufficiently
fast to be used in real-time simulation. These aspects of image simulation are addressed in
this thesis.

The Finite Element Method (FEM), which involves the discretization of continuum me-
chanics equations inside elements of a mesh representation of a given domain, is a common tool
for deformation modeling. It is a physically-based model with significant advantages. With
the advances in computer technology, fast simulation rates using FEM are readily attainable.
Consequently, it is the preferred method in many tissue simulation studies as presented later
in Section 1.2.2. A successful simulation relies on a “good” mesh representation of the tissue
as well as the equations involved in the FEM solution. A desirable mesh consists of elements
that introduce minimal error in the solution and also represent the anatomy and tissue compo-

1Haptics is is the combination of tactile and kinesthetic senses, which refer to the sense of touch and to the
sense of movement (from muscles), respectively. In this thesis, haptics is used to refer to the kinesthetic sense.
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sition sufficiently well in order to successfully approximate its actual behaviour. Conventional
generation of such meshes involves two stages: first segmenting the anatomy of interest and
next meshing the volume between these segmented surfaces. This often demands the scarcely-
available time of the highly-trained clinical personnel. Furthermore, only some parts of the
anatomy are segmented using this approach while neglecting the effect of others in deforma-
tion. Therefore, a technique that can mesh the visible features in a given imaging modality
using elements suitable for further FEM simulation is needed. This need is addressed by a
meshing technique introduced in this thesis. For images acquired using elastography2, this
technique has the essential advantage of readily offering an optimal discretization of the tissue
for a good approximation of mechanical behaviour without necessarily identifying/segmenting
each individual structure.

Needle insertion in tissue is a special case of minimally-invasive procedures. During percu-
taneous procedures (e.g., brachytherapy), no direct visual feedback is available, and therefore
such procedures are carried out relying on haptic feedback and/or real-time medical imaging.
The needle interaction with tissue differs from most other medical tool interactions in several
ways: the needle does not manipulate only the organ surface; friction is a significant force dur-
ing its interaction; and fine needles are flexible unlike many other surgical tools. This requires
specialized methods to model and simulate their interaction. Modeling of flexible needles is
also studied in this thesis.

A medical training system for simulating the prostate brachytherapy procedure requires
several components including: (𝑖) an efficient flexible needle model, (𝑖𝑖) a deformable tissue
model, (𝑖𝑖𝑖) a needle-tissue interaction model, (𝑖𝑣) a fast image simulation method, (𝑣) haptic
feedback, and (𝑣𝑖) generation of deformable patient models. This thesis studies the compo-
nents (𝑖), (𝑖𝑣), (𝑣), and (𝑣𝑖). Incorporating the other components from our earlier work, the
integration and development of a brachytherapy training system is also addressed in this thesis.

1.2 Background

First, prostate brachytherapy is introduced in Section 1.2.1. Previous work on tissue defor-
mation and needle-tissue interaction models is presented in Section 1.2.2. Next, common
approaches to mesh construction required by these models are given in Section 1.2.3. Back-
ground on simulated medical image generation techniques and in particular simulated ultra-
sound synthesis is presented in Section 1.2.4. Finally, medical simulators for needle insertion
and brachytherapy presented in Section 1.2.5 conclude this background review.

1.2.1 Prostate Brachytherapy

Brachy is a Greek term for “short distance” and brachytherapy is a treatment option involv-
ing percutaneous needle insertions to treat tumours and cancer via radiation. High-dose-rate
brachytherapy refers to the temporary application of radiation intra-operatively using a pow-
erful source in an inserted catheter, whereas low-dose-rate brachytherapy is the permanent
implantation of low energy radioactive pellets (seeds) in and around the tissue region to be

2Elastography is the method of imaging tissue elasticity, such as for the purpose of detecting stiffer cancer
tissue, by observing local tissue response (e.g., strain) induced by a mechanical excitation.
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(a) (b) (c)

Figure 1.1: Illustration of the brachytherapy procedure: (a) A needle is inserted in the prostate
through a template grid. (b) The transrectal ultrasound probe is translated to image at
different depths through the pelvic region. (c) The needles are imaged in transverse B-mode
slices during seed delivery to ensure accurate placement at the spatial locations as identified
pre-operatively at the treatment planning stage.

treated. Some types of cancer to which brachytherapy is applicable include prostate, cervical,
breast, and thyroid cancer.

Prostate cancer is the most common cancer among Canadian men with 25,500 new cases
and 4,400 deaths estimated in year 2009 alone. One in 6 men will be diagnosed with this
disease during their lifetime and its incidence rate is ever increasing due to the aging of the
population. Fortunately, over 90% of prostate cancer cases are curable if detected and treated
in their early stages.

Low-dose-rate brachytherapy is often the treatment of choice for early-stage locally-confined
prostate cancer and, throughout this thesis, brachytherapy refers to this particular type of treat-
ment. This treatment option has a high probability of eradicating the cancer while preserving
healthy tissue, contingent upon good planning and proper application. During a brachytherapy
procedure as illustrated in Fig. 1.1, loaded needles are inserted through the holes of a template
grid into the prostate according to a pre-plan. Meanwhile, the physician refers to transrectal
ultrasound (TRUS) images to find the needle tip. During a procedure, 80 to 150 seeds are
implanted using approximately 25 needles. The brachytherapy needles are 20 cm in length,
are quite flexible, and have a beveled tip. See [1] for a detailed description of the prostate
brachytherapy procedure.

The prostate is shifted and torqued during needle insertions. In [2], prostate torquing of
±12∘ were recorded on the coronal plane. Figure 1.2 demonstrates its shift on in-vivo TRUS
data. The given two images were taken at the same transducer depth within one second, before
and after a force was applied on the needle which was already in the prostate. Initially, only
the bladder is visible (see Fig. 1.2(a)) at the TRUS depth of the prostate base (its superior
side). When the needle is pushed in by the doctor, the prostate is observed to consequently
shift into the plane of view in Fig. 1.2(b).

Despite the low risk of brachytherapy, seed placement errors are still common even by ex-
perienced physicians [3]. A sub-optimal application resulting in an undesired dose distribution
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Figure 1.2: The prostate is observed during a needle insertion. Although the TRUS probe is
imaging transversally at the same depth, the imaged features are observed to change as the
tissue shifts/deforms under interaction forces.

at the target volume not only decreases the effectiveness of the treatment, but it may also lead
to subsequent complications such as changes in bowel habits, incontinence, and impotence [4].
Furthermore, errors caused by prostate deformation and motion due to needle insertion may
necessitate needle re-insertions, which in turn increase the procedure time and the risk of com-
plications, and cause significant edema. Thus, several studies have aimed at improving the
outcome of brachytherapy, either through training/rehearsal systems for medical residents and
performing physicians or through planning schemes to increase the targeting accuracy by mod-
eling and correcting for tissue deformation before it occurs. For both, an accurate simulation
of the needle-tissue interaction during brachytherapy is required.

1.2.2 Tissue Deformation and Needle Interaction Models

Deformation modeling has been an active topic in computer graphics for the fitting of noisy
data and simulation of clothing, facial expressions, and human/animal characters. See [5] for
a detailed review. Although mass-spring meshes were successfully implemented in [6, 7], the
discretization of continuum mechanics equations using the Finite Element Method (FEM) still
has significant advantages in deformation modeling. The condensation technique introduced
in [8] allows fast surface interactions. Computational advances made real-time rates possible
for large meshes using quadratic strain and dynamic FEM [9, 10]. There has also been work
on other elasticity formulations, comparison of iterative solution techniques, offline mesh re-
finement methods, and contact handling algorithms [11, 12]. A review of different models can
be found in [13].
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The simulation of needle insertion differs from the simulation of other medical tool-tissue
interactions in several ways: the needle does not manipulate only the organ surface; friction is
a significant force during its interaction; and fine needles are flexible unlike many rigid surgical
tools. These three issues were addressed in 2D with a finite-element-based model using the
condensation approach, a stick-slip friction model, and local frame rotations with low-rank
matrix updates, respectively [14, 15]. This work was extended to 3D [16, 17] and used as part
of a needle targeting system [18]. See [13] for a review.

In order to parametrize the interaction of needle and tissue, earlier work focused on the
forces on the needle base [19]. Tip cutting and (velocity-dependent) shaft friction force have
been also modeled [20, 21]. The tip bevel deflection of highly-flexible (also called steerable)
needles has been studied recently in the context of needle path planning [22, 23].

In this thesis, a linear-elasticity FEM model with 4-node tetrahedral elements is used for
tissue deformation modeling. The interaction of the tissue FEM and the needle is achieved
using a stick-slip friction model. The cutting and friction parameters required by this model
can be identified from controlled insertion experiments, for instance, by using observations
from an optical setup [20] or an ultrasound setup [21].

1.2.3 Model Generation for Medical Simulations

Most techniques for deformation simulation, including FEM, require a discretization of the
tissue, called the mesh. In model generation for medical simulations, conventional approaches
treat segmentation andmeshing as two distinct and successive operations. In segmentation, the
boundaries of relevant anatomy are identified. Manual segmentation involves contouring these
on slices of the volume, which can later be extruded to surface models [24–26]. Alternatively,
(semi-)automatic methods find the anatomy requiring certain user input. The domain of
interest is next meshed by placing FEM elements inside and around the segmented surfaces. In
this approach, the segmented surface becomes a constraint for meshing, preventing any possible
of trading off the surface compliance with better mesh quality. Few methods include measures
to adjust surface approximation accuracy. However, since the original image is discarded and
only the surfaces are retained at this meshing stage, it is not possible to determine at which
mesh point and how much of a surface compliance tradeoff is feasible. In addition, the final
mesh can only conform to anatomical structures that are initially segmented. This presents
the loss of some possibly meaningful data, which existed in the original image, during this
process. As a result, a novel meshing technique that takes images as input and generates FEM
meshes automatically in a single step is proposed in this thesis.

In mesh generation, various element geometries are possible. Although hexahedral elements
are known to produce more accurate results in FEM, they are mostly preferred in structured
meshes and tetrahedra are still commonly used due to their flexibility in customizing unstruc-
tured meshes to given domain boundaries. Applications of tetrahedral meshes include areas
such as solid modeling [27], haptics [28], fracture [29], fluid flow [30], heat transfer [31], sur-
gical simulations [32], and biological tissue modeling such as the brain [33], the knee [11], the
liver [34], and the uterus [35].

Most algorithms for tetrahedral mesh generation can be classified in one of the follow-
ing three groups: (𝑖) the octree technique [36], a recursive division of the model space into
smaller elements until a desired resolution is reached for the elements that are cut by the
object boundary; (𝑖𝑖) the advancing fronts [37, 38], which progressively builds the tetrahedra
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starting from the triangulated surfaces of objects while maintaining an active front that moves
inwards/outwards by the formation of new elements; and (𝑖𝑖𝑖) methods using the Delaunay cri-
terion [39], which form the largest group of tetrahedral meshing techniques. Since this criterion
is just a connectivity definition, not a meshing algorithm itself, additional tetrahedralization
methods are required for mesh generation. Since its first use in meshing in [40], numerous
Delaunay-based methods have been developed which differ primarily by their decision mecha-
nisms on introducing new points, modifying the current ones, and heuristically fixing quality
issues that arise.

Following the meshing approaches above, additional mesh post-processing stages such as
smoothing, cleanup, and refinement are often required to improve element quality. Smoothing
refers to the slight relocation of the mesh nodes using techniques based on averaging (e.g.
Laplacian smoothing), physically-based models (e.g. spring interaction between neighbours)
or optimization [41]. Cleanup refers to the step in which element connectivity is optimized
using edge/element swaps (flips). Refinement is the reduction of the local element sizes by
node insertion for the purpose of capturing a local physical phenomenon or for increasing the
mesh quality.

Some of the smoothing techniques above were also extended to stand-alone meshing ap-
plications [42, 43]. Among these, energy-based methods are of special interest due to their
superior results and simpler implementation. They are also easier to analyze mathematically
and therefore theoretical guarantees on results can be derived. In this thesis, the state-of-
the-art variational meshing technique of Alliez et al. [43] is adopted and integrated with an
additional image-based energy definition. The optimization of the resulting energy measure
aims at finding a mesh with high-quality tetrahedra that also optimally partitions an under-
lying image.

1.2.4 Simulating Medical Images

Ultrasound is an inexpensive, non-ionizing, real-time medical imaging modality and hence one
of the most commonly used examination tools. However, image anisotropy and the existence
of various artifacts cause the need for extensive echographer training, which has motivated
several computer-based simulation environments [44].

There exist two major approaches for simulating B-mode ultrasound images, the generative
approach and the interpolative approach. The former simulates the ultrasonic wave propagation
by using accurate models of the probe, the tissue scatterers, and the wave interaction [45,46],
but involves a very long generation time. The latter approach generates images by interpolating
in 3D regular-grid reference volumes reconstructed [47, 48] from pre-acquired images. Several
studies follow this latter approach [49–55] since its enables data processing with off-the-shelf
algorithms. Refer to [44] for a review of ultrasound training simulators.

Since a generative simulation approach with a full-blown wave interaction model is not
feasible for real-time applications, some recent work has focused on developing heuristic models
that can be computed in real-time [56–58]. Deriving the parameters of such models using
CT data was also proposed [59,60]. Although such pseudo-generative methods for echography
simulation are appealing, due to the complex nature of actual wave interactions, it is extremely
difficult to generate even common ultrasound phenomena, such as speckle formation, using
these methods, let alone realistic images.

As mentioned earlier, tissue deformation is common during medical procedures due to
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medical tool interactions. Additionally, an ultrasound examination often involves further de-
formation caused by the ultrasound probe. Therefore, for a comprehensive realization of a
training system involving ultrasound imaging, the deformation must be taken into account
in the simulated images. Furthermore, deformation observed in ultrasound images contains
essential information in certain applications, such as in the diagnosis of deep-vein thrombosis
(DVT) [55]. In addition, the ability to mentally register two-dimensional (2D) image slices
within the three-dimensional (3D) anatomy is a non-trivial skill required by any sonographer.
Real-time ultrasound simulators also have the potential to accelerate and improve such train-
ing. This identified need is addressed in this thesis. A method that generates simulated B-mode
images by taking into account tissue deformation is proposed in Chapter 3.

1.2.5 Medical Simulators

Just as a flight simulator is used for training pilots and helps in identifying the complications of
current and proposed procedures, a medical simulator is built to recreate the realm of a surgery
or examination to be used in training and testing. In this area there exists significant previous
work including epidural lumbar puncture [61], breast biopsy [62], interstitial brachytherapy [63],
prostate cryotherapy [64], prostate brachytherapy [17,65], hepatic surgery [66]. There are also
current commercialized products for laparoscopy, endoscopy, and intra-vascular access [67–69].

The brachytherapy simulation methods in the literature have addressed the tissue deforma-
tion in various ways, such as omitting deformation [70], employing heuristic models for organ
surface deformation [71], 2D FEM on a sagittal plane [65], and 3D FEM [17,18,72]. See [73]
for a detailed review of medical simulations, in particular for urological applications.

The 3D FEM-based simulation of [72] demonstrates insertion of needles into the prostate
region for training and planning applications. It uses Lagrange multipliers to couple the de-
formable models of tissue and the needle. In order to determine the stick-slip states of the
needle-tissue interaction to be used in this coupled solution, a linear complementarity problem
for all possible equation/friction state combinations was solved requiring a significant compu-
tational effort in spite of the computation acceleration efforts. Beside the planning use, this
simulation was proposed to run at visual refresh rates for the display of anatomical surfaces in
training. Unfortunately, it does not offer haptic or ultrasound feedback for training, in spite of
these being the only two available real-time intra-operative modality to a physician performing
brahcytherapy.

The 2D needle interaction simulation methods of [74] were adopted earlier in a 3D frame-
work for prostate brachytherapy [16]. Figure 1.3 illustrates a sample insertion/retraction using
this simulation. These techniques are adopted in this thesis in Chapter 5 to extend into a
haptic training simulator also having simulated B-mode imaging.

1.3 Thesis Objectives

In this thesis, novel methods addressing various aspects of a medical simulation system are
developed. To achieve accurate real-time medical simulations with deformation and to develop
a needle insertion training setup, the specific objectives of this thesis are as follows:

1. Developing a meshing technique to automatically generate FEM models from elastogra-
phy images.
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(a) (b) (c) (d) (e) (f)

Figure 1.3: The tissue mesh while the needle is inserted (a)-(c), moved upwards (d), and
retracted (e)-(f).

2. Providing realistic simulated ultrasound for medical training systems.

3. Simulating the bending of medical needles in a fast and accurate fashion.

4. Development of medical simulation components, such as tissue model, visual simulation,
haptic feedback, and user interface, and their integration in a rapid framework that allows
for real-time simulation.

5. Designing a patient-specific model generation scheme to acquire and prepare imaging
and deformation model data for the use of the targeted simulation framework.

6. By achieving the objectives above, developing methods and designing systems that will
enhance medical resident training and treatment planning by providing better comput-
erized alternatives for the current prostate brachytherapy procedure.

In the course of achieving these primary objectives, the following contributions were made:

∙ A novel use of angular springs in modeling needle bending was introduced and shown to
perform fast and accurately. Indeed, this model was shown to provide better performance
than common FEM methods in simulating the bending of a brachytherapy needle.

∙ A fast method of slicing images of volumetric data that is deformed according to a mesh
definition. For a given regular-grid volumetric data, realistic-looking medical images can
be synthesized in real-time for a tissue deformation simulation that runs in parallel.

∙ A novel energy-based meshing technique for medical simulations. While it can operate
with any imaging modality, its use with elastography imaging was shown to result in
tissue deformation models minimizing (elasticity) parameter discretization errors.

∙ A simulation integration scheme was developed where ultrasound simulation, needle-
tissue model, and haptic processes communicate and share data to simulate needle in-
sertion into the prostate.

∙ A patient model generated from MR images and registered to ultrasound volume for
simulation with B-mode feedback was proposed.
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1.4 Chapter Summary

The overall goal of the research undertaken in this thesis was to develop algorithms for generat-
ing patient-specific tissue deformation models and simulating needle insertion in these models
while providing realistic simulated medical imaging feedback. The particular application of
prostate brachytherapy is the motivation for this research. The thesis presented here is writ-
ten in the manuscript-based style, as permitted by the Faculty of Graduate Studies at the
University of British Columbia. In the manuscript-based thesis, each chapter represents an
individual work that has been published, submitted or prepared for submission to a peer re-
viewed publication. Each chapter is self-sustained in the sense that it includes an introduction
to the work presented in that chapter, the methodology, results and discussion. The refer-
ences are summarized in the bibliography found at the end of each chapter. The appendices
pertaining to each chapter are presented at the end of the thesis.

The components required for a simulation of brachytherapy needle insertion are addressed
in different chapters. The simulation of the prostate necessitates a deformable model, the
generation of which can be addressed using the variational meshing techniques presented in
Chapter 2. The interaction of the needle in such deformable 3D FEM models were already
investigated in our earlier work [16,17]. Chapter 4 presents a novel simulation approach for the
bending of brachytherapy needles, caused by forces acting on it during tissue interaction. For
a training use of such brachytherapy simulation, the generation of real-time TRUS-mimicking
images is also a requirement, which is addressed in Chapter 3. Finally, these different com-
ponents are integrated into a simulation framework and interface in Chapter 5. Although the
development of these techniques target brachytherapy, the individual chapters are presented
in a general setting and their integration into a simulation is postponed until Chapter 5.
This in accordance with the manuscript-based style and demonstrates the applicability of each
chapter’s findings in other potential applications. The focus and summary of each chapter is
presented below.

In Chapter 2, a novel image-based meshing technique is presented. In medical simulations
involving tissue deformation, the FEM is a widely used technique, where the size, shape, and
placement of the elements in a model are important factors that affect the interpolation and
numerical errors of a solution. Conventional model generation schemes for FEM consist of a
segmentation step delineating the anatomy followed by a meshing step generating elements
conforming to this segmentation. In this chapter, a single-step model generation technique is
proposed based on optimization. Starting from an initial mesh covering the domain of interest,
the mesh nodes are adjusted to minimize an objective function which penalizes intra-element
intensity variations and poor element geometry for the entire mesh. Trade-offs between mesh
geometry quality and intra-element variance are achieved by adjusting the relative weights of
the geometric and intensity variation components of the cost function. This meshing approach
enables a more accurate rendering of shapes with fewer elements and provides more accurate
models for deformation simulation, especially when the image intensities represent a mechanical
feature of the tissue such as the elastic modulus. The use of the proposed mesh optimization is
demonstrated both in 2D and 3D on synthetic phantoms, MR images of the brain, CT images
of the kidney, and vibro-elastography images of the prostate. This automatic mesh generation
approach can be used for generating deformable prostate-region models for a brachytherapy
training/planning simulation as presented later in Chapter 5.
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Chapter 3 presents an algorithm for fast image synthesis inside deformed volumes. Given
the node displacements of a mesh and a reference 3D image dataset of a predeformed volume,
the method first maps the image pixels that need to be synthesized from the deformed con-
figuration to the nominal predeformed configuration, where the pixel intensities are obtained
easily through interpolation in the regular-grid structure of the reference voxel volume. This
mapping requires the identification of the mesh element enclosing each pixel for every image
frame. To accelerate this point location operation, a fast method of projecting the deformed
mesh on image pixels is introduced in this chapter. The method presented was implemented
for ultrasound B-mode image simulation of a synthetic tissue phantom. The phantom defor-
mation as a result of ultrasound probe motion was modeled using the finite element method.
Experimental images of the phantom under deformation were then compared with the corre-
sponding synthesized images using sum of squared differences and mutual information metrics.
Both this quantitative comparison and a qualitative assessment show that realistic images can
be synthesized using the proposed technique. An ultrasound examination system was also
implemented to demonstrate that real-time image synthesis with the proposed technique can
be successfully integrated into a haptic simulation. The methods developed in this chapter are
implemented in a haptic brachytherapy training system as presented in Chapter 5.

In Chapter 4, modeling of medical needle flexibility is studied. Needle insertion is per-
formed in many clinical and therapeutic procedures. Tissue displacement and needle bending
which result from needle-tissue interaction make accurate targeting difficult. For performing
physicians to gain essential needle targeting skills, needle insertion simulators can be used for
training. An accurate needle bending model is essential for such simulators. These bending
models are also needed for needle path planning. In this chapter, three different models are
presented to simulate the deformations of a needle. The first two models use the finite ele-
ment method and take the geometric non-linearity into account. The third model is a series of
rigid bars connected by angular springs. The models were compared to recorded deformations
during experiments of applying lateral tip forces on a brachytherapy needle. The model pa-
rameters were identified and the simulation results were compared to the experimental data.
The results show that the angular spring model, which is computationally the most efficient
model, is also the most accurate in modeling the bending of the brachytherapy needle.

Chapter 5 presents a medical simulator for the prostate brachytherapy procedure. Needles
are inserted in deformable tissue models using a haptic device while force feedback computed
using a needle-tissue interaction model is rendered on a users hand. Transrectal ultrasound
images of the region of interest are also displayed in real-time using an interpolation scheme
accounting for the mesh-based tissue deformation. Employing a 3D ultrasound volume data
reconstructed a priori, this simulation method achieves realistic ultrasound feedback coupled
with immediate tissue deformation. Models for simulating tissue deformation using the finite
element method were obtained by meshing contours on MR images, which are also rigidly
registered to ultrasound voxel volumes using the prostate surface. The presented simulation
system is both suitable for brachytherapy training using haptic control/feedback and for plan-
ning scenarios using the desired base trajectory input methods provided in the interface.

In Chapter 6, the results of the collected works are related to one another and a unified goal
of the thesis is discussed. The strengths and weaknesses of the research are then presented,
along with future directions for research.
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Chapter 2

Image-Based Variational Meshing 3

In order to realize a prostate brachytherapy simulator, a deformable mesh model of the prostate
is required. Since this simulation is also intended for treatment planning, or possibly other
intra-operative uses, a model generation technique with minimal user input is desired. This
further enables the development of the method into a fully-automated technique.

To simulate an accurate deformation using FEM, the mechanical elasticity parameters of
a mesh have to be adjusted accordingly. The derivation of such mechanical parameters from
in-vivo tissue is now possible with recent advances in the elastography field. Prostate vibro-
elastography enables us to acquire the data for the generation of volumetric images of these
mechanical parameters. This chapter describes a method for generating tetrahedral prostate
meshes from such images. These generated tetrahedra have the advantage of minimally par-
titioning the input mechanical feature images, so that the error due to this discretization is
minimized. This technique is indeed applicable to the meshing of images from different imaging
modalities. This chapter describes the general underlying concepts of this variational meshing
approach, without particular focus on the prostate. Meshing of a labeled prostate voxel volume
using these methods is later demonstrated in Chapter 5.

2.1 Introduction

The finite element method (FEM) is a common technique in medical simulations. Its speed
and accuracy depend on the number of nodes/elements used and their shape and placement
in the domain. In this chapter, a variational modelling approach is presented to produce
high-quality FEM meshes automatically for given tissue domains in both 2D and 3D. The
method aligns FEM elements to group similar image intensities, as a way of clustering (seg-
menting) the domain, while maintaining good element aspect ratios for FEM. The use of such a
method becomes particularly important when the input image represents a mechanical feature
distribution of the tissue such as elastic modulus, because the elasticity parameters of each
element is represented with a single value in FEM and the proposed method minimizes an
objective function defined by the error between this single-value discretization and the mea-
sured modulus distribution within each element. Nevertheless, as presented in this chapter,
the method is applicable to the meshing of most medical imaging modalities without the need
for an intermediate segmentation.

In the conventional modelling methods for the FEM simulation of tissue deformation, a dis-
crete representation of the anatomy of interest is obtained from an intensity image/volume by

3A version of this chapter has been peer-reviewed and published in the proceedings of the 2009 Medical
Image Computing and Computer Assisted Intervention (MICCAI) conference, London, UK. O.Goksel and
S.E. Salcudean: “High-Quality Model Generation for Finite Element Simulation of Tissue Deformation,” Lec-
ture Notes in Computer Science, 5762:248-256, 2009. A version of this chapter has also been submitted for
publication. O.Goksel and S.E. Salcudean, “Image-Based Variational Meshing”.
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employing two steps, segmentation and meshing. Segmentation, which consists of recognition
and delineation of anatomy, has been studied in several medical contexts using numerous dif-
ferent approaches [1]. Although automatic segmentation techniques do exist, recognition is not
a computationally well-defined problem and thus is usually achieved with manual intervention
leading to semi-automatic implementations. In contrast, delineation, which in many cases can
be stated roughly as grouping similar pixels, allows for algorithmic approaches. Segmentation
overall often requires a priori information about both the anatomy and the medical imaging
modality, therefore does not have a one-size-fits-all solution.

The result of segmentation is a representation of the organ boundary, which is often in an
explicit form such as a surface mesh, although implicit representations are also viable. This
anatomical boundary is then supplied to a meshing scheme to tile the space with elements. The
final mesh is then used for simulating tissue deformation for procedures such as laparoscopic
surgery [2], brain surgery [3], breast biopsy [4], and brachytherapy [5].

It is possible to generate anatomical models using structured meshes such as convert-
ing image voxels into hexahedral elements [4]. However, unstructured meshing is a common
choice since the same or better surface/volume representations can be achieved using fewer
elements [6, 7]. Popular unstructured meshing techniques include octree-based methods, De-
launay approaches, and advancing fronts, most of which were originally developed and tuned
for the modelling of mechanical structures. The meshing efforts for medical applications have
often focused on generating meshes inside given segmentation contours [8] or 3D surface tri-
angulations [3, 9–11]. Common approaches first tile the bounding box of the anatomy with
elements, and then cull the elements outside the anatomy, followed by a final stage of clip-
ping [3, 8, 9] or compressing [10, 11] the elements cutting the anatomical boundaries. Graded
meshes with smaller elements closer to the surfaces were employed in applications where the
surface mesh resolution is the primary concern [9,11–13]. Typical implementations of meshing
techniques from different conceptual categories were compared by Fedorov et al. [14] in the
context of deformable registration of brain MR images.

Image segmentation is a special case of the general data clustering techniques [18], where
not only similarity of intensities but also spatial distribution such as connectivity of voxels (so
that they form a single object) is often desired. Such additional constraints are enforced by
the inherent functioning of the particular segmentation method such as watershed and active
contours [19] and define the overall performance of that method. Indeed, segmentation as
part of a meshing process can be seen as an even more-specific clustering problem, where the
clustered regions must have concrete geometrical shapes such as tetrahedra. Gevers [20] intro-
duces a 2D method for segmenting photographic images using triangle splitting and merging
based on intensity distributions in elements. A similar technique that also considers shape
quality measures was recently proposed by Reid et al. [21] for segmenting micro-structures in
2D medical images. However, such methods involve several local mesh operations (e.g. an-
nealing, smoothing, fixing in [21]) and their extension to 3D is not trivial. In contrast, our
proposed penalty-based mesh evolution scheme to minimal image partitioning problem has
multiple advantages.

Most segmentation methods require some sort of a manual intervention not only demanding
the scarcely available time of health professionals but also preventing an automatic modelling
for FEM. Furthermore, there are certain drawbacks with modeling approaches consisting of two
separate steps of segmentation and meshing. For instance, the surface triangulation generated
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during the segmentation is often left unchanged using common meshing software since this
surface is used as a boundary constraint for meshing. As a result, to guarantee good FEM
elements using a limited number of nodes/elements, these intermediate surfaces should either
be inherently FEM-friendly delineations or should be fixed using additional intermediate steps.

Some methods in the literature generate meshes from given voxel datasets, where each
voxel is marked a priori as being inside or outside of a structure [8, 15–17]. At different
sources, such voxel volumes are named as labeled medical datasets, multi-label partitions, or
bit volumes. These can be generated using voxel clustering (segmentation) techniques, such
as simple intensity thresholding [12]. Therefore, the above-specified works from the medical
image meshing literature, which rely either on a priori data or on external query mechanisms
for deciding whether a point in space is inside or outside a structure, require a segmented
volume as input. By the very design of these methods, an internal surface in the input is used
as the boundary on which the mesh faces are fit or refined. Consequently, only the surface
information is kept and any other image variation is discarded before starting the meshing
process. This prevents the meshing procedure from making any trade-offs between fitting the
surface or preserving mesh element qualities for a given number of nodes. Furthermore, any
features that are visible in the image, other than the segmented/labeled structures, are also
discarded, even when the mesh can also include those features without any further cost.

In contrast to the methods in the literature, that do not address the segmentation within
the meshing framework, our method presented in this chapter implements this segmentation
intrinsically. It takes raw (unprocessed) intensity images, that have not been segmented or
labeled, from a given image modality and generates meshes considering FEM quality mea-
sures. At the same time, our method ensures an optimal partitioning (clustering) of voxels
into tetrahedra. Essentially, meshing is the discretization of space into elements (geometrical
primitives). Our method assigns a cost for each such discretization based on its projection on a
given image and chooses one with a minimal cost. Note that such optimally-partitioning tetra-
hedra can indeed be segmented/labeled into structures following the meshing. These labeled
surfaces, which can be determined such as by using thresholding as shown in this chapter,
will consist of only internal mesh facets, hence inherently complying with the mesh. Thus,
the resulting FEM tessellations can be generated using our method in a single-step variational
framework.

2.2 Previous Work on Optimal Tessellations

During finite element modelling of deformation, the two main sources of error are interpolation
errors of the approximation to the function and its gradient (which is strain for deformation),
and numerical errors during the solution of the approximation. Numerical errors depend
mainly on the conditioning of the finite element matrices involved and also on the numer-
ical precision and type/order of mathematical operations applied in obtaining the solution.
Interpolation errors are affected by various characteristics of the mesh and the approximant
function, such as the polynomial order of the function approximation. Among these error
contributors are the shape and size of mesh elements [22]. Consequently, it has been an active
field of research to obtain meshes that will introduce minimal amount of such errors in FEM
simulations.

Given a set of vertices, their Delaunay tessellation offers several favorable features compared
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(a) (b)

Figure 2.1: (a) A type of ill-shaped flat tetrahedron called sliver. (b) 1-ring neighbourhood of
a node.

to other possible tessellations. In particular, when a function 𝑓 has bounded second derivatives,
Delaunay tessellation minimizes the worst interpolation error between 𝑓 and its piecewise linear
approximant defined by this tessellation (mesh). Delaunay tessellation received significant
attention in the mesh generation literature.

The major problem with Delaunay refinement approaches to mesh generation in 3D has
been the existence of slivers in the final meshes. Slivers are a class of degenerate tetrahedra that
are not necessarily removed by the Delaunay refinement. The vertices of a sliver are located
nearly co-circular with one vertex being slightly out of the plane of the other three vertices
as in Fig. 2.1(a). One of the detrimental effects of such tetrahedra on linearly approximating
the gradients of a function (e.g. deformation) can be demonstrated by the following example:
Consider linearly approximating an underlying function near the center of this circle by first
approximating the values at the mid-points of the upper (𝑢) and lower (𝑙) tetrahedron edges.
The value at each mid-point is is found as the average of the known vertex values at the
two (opposite) ends of this edge. If these two mid-point approximations differ, the gradient
between them will be arbitrarily large as the sliver degenerates, i.e. ℎ → 0, as the mid-points
are located very close to each other in space. This degeneracy of such tetrahedra are not
correctly captured by many commonly-used mesh quality measures such as the edge-radius
ratio, which is the ratio between the shortest edge length and the circumsphere radius. Edge
ratios, area-volume ratios, and minimum/maximum dihedral angles are among various other
quality measures suggested in the literature. Reviews of these measures with their relation to
function approximation and FEM were given by Field [23] and Shewchuk [22]. Accordingly,
the ratio of inradius to circumradius was presented by Alliez et al. [24] as the fairest quality
measure and comparison in 3D, that punishes all types of poor-geometry elements including
slivers, which most other measures fail to identify.

To achieve better-shaped elements, modifications to Delaunay refinement and other local
optimization schemes were proposed in the literature [25–27]. However, these methods require
significant implementation effort and result in non-convex functionals that are difficult to an-
alyze and derive theoretical guarantees for. More recent approaches to mesh smoothing such
as the Centroidal Voronoi-Delaunay Tessellation (CVDT) [28] and Optimal Delaunay Trian-
gulations (ODT) [29, 30] consider minimizing a quadratic energy through updates of vertex
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positions and their connectivity. Advantages of these methods are (i) the simplicity of each
update and (ii) the implication of eventual convergence due to the monotonically-decreasing
energy definitions. Building on these and other previous work, Alliez et al. introduces a 3D
mesh generation technique producing superior meshes compared to similar methods in the
literature [24]. This method is adapted in this work.

For anisotropic meshing, Chen [30] notes that ODT equidistributes the edge lengths of a
mesh under a metric related to the Hessian of the approximated function 𝑓(x). Alliez et al.
adjust the edge length distribution in space using a mesh density function, e.g. to have finer
elements modeling higher curvature boundary surfaces of a 3D object [24]. However, it is not
clear from these and other work, how the information about a feature distribution through the
tissue (e.g. distribution of elastic modulus) can be incorporated into such variational meshing
techniques, assuming this distribution is known in the continuum a priori. Our proposed
technique addresses this aspect of meshing.

The methods for image-compliant meshing are introduced in Section 2.3 and a numerical
approach for their use is presented in Section 2.4. The results from various imaging modalities
are demonstrated in Section 2.5, which is followed by a discussion and conclusions in sections
2.6 and 2.7, respectively.

2.3 Methods

The method involves combining an element geometric quality metric with an image-compliance
based metric into an objective function to be minimized. First, the use of the former metric
alone is described as it is also employed for initializing the optimization of the combined func-
tion. Next, an optimal parameter discretization of the elements of a tessellation is presented.
Based on this, an image-compliance measure is defined for an optimal image partitioning and,
finally, its combination with the geometric definition above is introduced.

2.3.1 Geometric Energy for Mesh Optimization

Let 𝑔𝒯 (x) be a piece-wise linear approximation of a function 𝑓(x) on a given tessellation
𝒯 . It is known that the integral approximation error 𝐸𝐺 = ∥𝑔𝒯 − 𝑓∥ℒ1 is minimized by the
Delaunay tessellation of the domain ℳ ⊂ ℝ

𝑁 when (𝑖) the function 𝑓 is a paraboloid, i.e.
𝑓(x) = ∥x∥2, and (𝑖𝑖) 𝑔𝒯 is its overlaid circumscribing piece-wise linear approximant [29].
This was used in iterative optimization schemes in the literature to obtain geometrically high-
quality meshes [24, 30] and is also adopted as the geometrical mesh quality measure in our
method in the form given below:

𝐸𝐺 =
∑
𝜏∈𝒯

∫
𝜏
𝑔𝜏 (x) 𝑑x−

∫
ℳ

𝑓(x) 𝑑x (2.1)

=
1

𝑁 + 1

∑
𝑖

𝑓(x𝑖)∣Ω𝑖∣ −
∫
ℳ

𝑓(x) 𝑑x (2.2)

=
1

𝑁 + 1

∑
𝑖

x2𝑖 ∣Ω𝑖∣ −
∫
ℳ
x2 𝑑x (2.3)

where Ω𝑖 is the 1-ring neighbourhood of node 𝑥𝑖, that is the set of elements having that node
as a corner as in Fig. 2.1(b). This neighbourhood will be referred as 1-ring throughout this
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Figure 2.2: (a) Random 2D/3D mesh initializations, (b) their geometrically optimized config-
urations, and (c) the initial/final aspect ratio 𝜌 distributions.

chapter.
Examples of optimizing this geometric energy 𝐸𝐺 alone are shown in Fig. 2.2 in 2D and

3D, where the meshes were initialized using a random distribution of vertices as in Fig. 2.2(a).
This optimization involves Lloyd’s relaxation, which is performed as alternate updates: a global
Delaunay tessellation of given node locations x𝑖 and a node relocation so that the above-given
cost function is minimized. Figure 2.2(b) shows the optimized meshes after having converged.

During various mesh generation steps and examples in this chapter, inradius-to-circumradius
ratio is used to control and observe the quality of elements. This ratio 𝜌 is normalized by the
dimension 𝑁 of the meshing domain [23]:

𝜌 =
𝑁 𝑟

𝑅
(2.4)

where 𝑟 and 𝑅 are inradius and circumradius, respectively, such that it takes on values in the
range [0, 1] and is maximized for a regular simplex. Unlike in 2D where an infinite domain
can be meshed with all regular triangles, 3D space unfortunately cannot be tiled by all regular
tetrahedra alone. Therefore, 3D meshes are bound to have some sub-optimal elements in
practice. Figure 2.2(c) shows the improvement in the inradius-to-circumradius ratio 𝜌 with the
optimization procedure. A 𝜌-histogram compacted towards larger values in general indicates
a better mesh having more elements with higher quality.
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2.3.2 Element Discretization

In this section, a penalty-function for image discretization is defined based on a mesh element
and the image pixels/voxels covered by that element. Since an element uses a discretized
value to represent any spatial location within itself, an ℒ2-norm difference of the discretized
element value and the voxels represented by that value is used as the metric for the error
relating to this discretization. This definition is in a way similar to the common Mumford-
Shah functional used in various image segmentation methods to partition pixels based on their
similarity [31]. However, in contrast to such methods, where often there is a term constraining
the length/curvature of segmenting curve for regularization purpose, the planar faces of mesh
elements in our method already constrains the way that image pixels can be partitioned in
space.

Let ℎ(x) denote the distribution of a feature in ℳ, the domain of interest. In the FEM,
such a feature is discretized on a mesh so that each mesh element 𝜏𝑗 has a single assigned
value, ℎ̃𝑗 , modeling this feature within that element. Let the discretization error associated
with this single value approximation ℎ̃𝑗 and the values that it represents, {ℎ(x),x ∈ 𝜏𝑗}, be
defined as an ℒ2-norm:

𝐸𝑗
𝐷 =

∫
𝜏𝑗

∣∣∣ℎ(x)− ℎ̃𝑗

∣∣∣2𝑑x . (2.5)

It is evident that for a constant ℎ within an element, the best ℎ̃𝑗 is that constant value
itself. In general, this error is minimized for ℎ̃𝑗 being the average mean value of the given
distribution. Therefore, for a given element and given (background) feature distribution, a
discretized feature value ℎ̃𝑗 is assigned to that element 𝜏 𝑗 as the average of {ℎ(x),x ∈ 𝜏𝑗}.
This average mean discretization is further discussed in the context of elastic strain energy
formulation for FEM in Section 2.6.2.

2.3.3 Objective Function for Image Compliance

Assigning a single-value equivalent of a known feature distribution (an image) within an element
as the average mean value is demonstrated in Fig. 2.3 for a structured mesh overlaid on a
synthetic phantom. The element shading in Fig. 2.3(b) denotes the average intensity of the
underlying image pixels.

The element discretization error defined in (2.5) is integrated over the mesh to yield the
following cost function describing the fitness of a mesh to an image:

𝐸𝐷 =
∑
𝑗

∫
𝜏𝑗

∣∣∣ℎ(x)− ℎ̃𝑗

∣∣∣2 dx . (2.6)

Note that with the earlier assumption of ℎ̃𝑗 being the average mean value in the element,
(2.6) can be rewritten as:

𝐸𝐷 =
∑
𝑗

𝑣𝑗 var (ℎ(x) : x ∈ 𝜏𝑗) (2.7)

where var is the second-moment of a distribution around its mean, namely the variance. Thus,
this definition penalizes elements with larger image intensity variations. However, it does not
enforce suitability of element size and shape for the FEM. As a result, in order to derive a
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Figure 2.3: An initial synthetic phantom (a) with its discretization (b).
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λ = 0.6

(d)
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Figure 2.4: A simple four-element mesh (a) and the combined cost 𝐸 as a function of mid-node
position for 𝜆 of (b) 20%, (c) 40%, (d) 60%, and (e) 80%.

variational scheme trading off between element geometry and image representation, the two
error metrics 𝐸𝐺 and 𝐸𝐷 above are combined as follows:

𝐸 = (1− 𝜆)𝐸𝐺 + 𝜆𝐸𝐷 (2.8)

where 𝜆 ∈ [0, 1) is the weighting factor of discretization.
A visualization of this combined error is presented for a simple 2D mesh in Fig. 2.4, where

𝐸 is plotted as a function of the center node position. For this illustration, a diamond shaped
image is used as in Fig. 2.4(a). Then, (2.8) is calculated for the mesh using (2.3) and (2.7),
as the position of the center node is changed. For this illustration, the triangulation and the
four corner node position defining the boundary are kept fixed. The combined cost 𝐸 is seen
in figures 2.4(b)–(e) as a function of the center node position for different weighting factors 𝜆.
Note that with the two competing measures in this example: (𝑖) the best triangle aspect ratios
are achieved by minimizing 𝐸𝐺 when the mid-node is placed near the center, and (𝑖𝑖) the
variance of some triangles reduce to zero minimizing 𝐸𝐷 when the mid-node is placed near the
corners of the diamond shape. Consequently, for small 𝜆 values, 𝐸 is minimized at the center
disregarding the underlying image, whereas the shape corners are captured better by the node
as 𝜆 increases.
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113 nodes − 196 elements : λ = 0.05 113 nodes − 196 elements : λ = 0.30

(a) (b)

Figure 2.5: The initial phantom mesh in Fig. 2.3 optimized using (a) 𝜆 = 0.05 and (b) 𝜆 = 0.30
are shown as meshes overlaid on the image (top) and the corresponding image approxima-
tions (bottom).

2.4 Implementation

The objective 𝐸 is a function of node location 𝑥 and mesh connectivity (tessellation) 𝒯 . This
cost function is minimized in a numerical optimization scheme, where node locations and ele-
ment connectivity are updated alternately. Figure 2.5 demonstrates two example mesh models
generated for the 2D synthetic phantom in Fig. 2.3 after optimization using the presented
method with two different weighting constants 𝜆. In order to accommodate for the incor-
poration of the image-based cost component, the optimization procedure based on Lloyd’s
relaxation as in other CVDT or ODT optimizations in the variational meshing literature is
restructured as described below.

2.4.1 Mesh Initialization

In order to initialize the optimization procedure using the combined cost 𝐸, first an optimum
geometrical configuration is found by minimizing 𝐸𝐺 alone. This is indeed equivalent to taking
𝜆 = 0 in our formulation. This initialization step is primed using nodes that are at uniformly-
distributed random locations. The mesh output of this step is referred as the initial mesh
throughout the rest of this chapter, since it is subsequently used as the starting configuration
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for our proposed optimization method.

2.4.2 Node Updates

Consider the optimality condition for a mesh using the combined metric 𝐸, with the addition of
the image-based component 𝐸𝐷 to the geometrical definition. In an optimal mesh, the gradient
of cost function 𝐸 with respect to the position of each node within its 1-ring approaches zero.
Each node is updated to minimize the cost using this necessary optimality condition according
to Lloyd’s relaxation. To compute 𝐸𝐺 and 𝐸𝐷, (2.3) and (2.7) are employed respectively.
Finite-differences were then used for the gradient of the combined 𝐸 in the following two
optimization schemes. The first method aims at finding an exact optimum location within
each 1-ring at each iteration and the second approximates this location. The benefits of
this approximation in terms of computational time and convergence are discussed later in
Section 2.6.

Constrained Non-Linear Optimization

The optimal location of x𝑖 minimizing 𝐸 is found by taking the 1-ring polygonal/polyhedral
region Ω𝑖 seen in Fig. 2.1(b) as the feasible solution region. Then, a non-linear optimization
scheme is used where the perimeter of Ω𝑖 is defined as a set of inequality constraints. Ω𝑖 is
bounded by a set of lines in 2D (outer edges of neighbouring triangles as in Fig. 2.1(b)) and
by a set of planes in 3D (outer triangular faces of neighbouring tetrahedra). Therefore, the
feasible region Ω𝑖 can be described as a constraint 𝐴𝑖𝑥𝑖 < 𝑏𝑖 as given in Appendix A, yielding
a node location update as:

x′𝑖 = argmin
x𝑖∈Ω𝑖

𝐸(𝑥𝑖) (2.9)

= argmin
x𝑖

𝐸(x𝑖) 𝑠.𝑡. 𝐴𝑖x𝑖 < 𝑏𝑖 . (2.10)

This is implemented in Matlab using sequential quadratic programming.

Gradient Descent with Parabola Fit

In this method, each node x𝑖 is updated (relocated) locally at every iteration using the error
𝐸Ω𝑖 in its 1-ring Ω𝑖 , calculated for perturbations in each coordinate axis by a given step length.
Sub-step length updates are further achieved using a parabola fit in each individual axis. Prior
to updating each node, an initial perturbation magnitude (step length) is defined using the
distance from this node to its closest element centroid in Ω𝑖 . If a perturbation were to invert
a neighbouring tetrahedron, then that immediate step length is reduced using a golden search
method until a feasible perturbation is reached or the step length becomes too small with
respect to the image resolution. Note that the smallest feature that can be detected and
modeled is limited naturally by the image pixel/voxel size. This relation to image resolution
is further discussed in Section 2.6.

2.4.3 Connectivity Updates

Out of all possible tessellations of given nodes, the Delaunay tessellation offers a mesh that
minimizes the geometric measure. Unfortunately, there is no similar result for the combined
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objective function. Due to the image-based component, a tessellation that is not optimal for
geometry alone can still be optimal for the combined function, for instance, by capturing the
image variation better.

In this thesis, a simple connectivity update strategy is adapted, where at each iteration,
the Delaunay tessellation of current nodes is considered as a connectivity alternative. Such a
tessellation is known to reduce 𝐸𝐺 and therefore has potential to reduce the combined cost
𝐸 as well. Furthermore, there exist well-established fast methods for finding such Delaunay
tessellations. The connectivity update is performed as follows: at each iteration following the
update of node positions, the mesh is checked to determine whether it satisfies the Delaunay
criterion. If this is the case, no further action is taken. Otherwise, first the Delaunay tessel-
lation is found, then the combined error is calculated for this new tessellation and compared
to the current 𝐸. Accordingly, the tessellation with smaller cost is chosen to proceed for node
updates in the following iteration.

2.4.4 Normalization of Cost Weighting Factor

Our design parameter 𝜆 sets the trade-off between geometry and image compliance. However,
its actual effect on the result depends on many factors such as the domain size, the number of
elements, and the intensity variation of the given image. Depending on such parameters, 𝐸𝐺

and 𝐸𝐷 may have very different scales separated by orders of magnitude. Consequently, in order
to have control over the range of practical 𝜆 values an additional step of 𝐸𝐺/𝐸𝐷 normalization
is employed. In the first iteration where 𝐸𝐺 is optimum, a scaling factor between the values
of these two error definitions is calculated so that the given 𝜆 will indeed be interpreted as
the percentage error contribution of discretization rather than an absolute quantity. This
scaling factor is then fixed and used for the rest of the iterations. This treatment normalizes
𝜆 allowing us to report consistent effective values (percentages), which are easier to associate.
For instance, a 𝜆 of 30% means that the optimization process targets minimizing the cost
combined as 30% discretization and 70% geometry components with respect to their initial
error contributions.

2.4.5 Convergence Measure

A convergence measure for the optimization is set in this chapter as the root-mean-square
nodal position update at iteration 𝑡 normalized by the mesh bounding-box size 𝑏 as follows:

𝜐 =
1

𝑏

√√√⎷ 1

𝑛

𝑛∑
𝑖

(
x𝑡+1
𝑖 − x𝑡𝑖

)2
(2.11)

where 𝑛 is the number of mesh nodes. A mesh is considered to have converged when 𝜐 < 10−3.

2.4.6 Element Aspect Ratios

In general, a 𝜌-histogram compacted towards this maximum value indicates a better mesh.
However, this qualitative comparison of mesh 𝜌-distributions is not practical in many cases. In
this thesis, the mean value of (1−𝜌) is observed as a quantitative measure for the compactness
of these histograms towards the optimal quality value of 1. Theoretically, the worst element

27



Chapter 2. Image-Based Variational Meshing

defines the performance, however the overall distribution of the aspect ratios is often also of
great interest. As a result, the average, quadratic, and maximum mean values of (1−𝜌𝑖) for all
elements 𝑖 are observed during optimization steps in this chapter. For instance, the quadratic
mean metric is calculated as follows: √√√⎷ 1

𝑛

𝑛∑
𝑖

(1− 𝜌𝑖)
2 (2.12)

The worst aspect ratio max{1−𝜌𝑖} is also used to identify few cases where an ill-shaped tetra-
hedron is not removed by the standard meshing procedure. A vertex insertion/teleportation
to the centroid of such element is employed to recover such cases [24].

2.4.7 Summary of the Algorithm

Below is the overview of the algorithm, showing the concepts introduced above.

MeshInitialization()
Normalization()
REPEAT

MoveNodes()
UpdateConnectivity()

UNTIL (meshConverged)
PostProcess()

This block of algorithm starts with an initial mesh, such as a regular grid, or generates a
mesh with node positions already optimized for best geometric distribution at the beginning
step of MeshInitialization (Section 2.4.1). The step Normalization refers to finding the scaling
between the initial 𝐸𝐺 and 𝐸𝐷 for a normalized 𝜆 (Section 2.4.4). The method MoveNodes
visits and repositions each node inside its 1-ring, such that the cost of that 1-ring will decrease
(Section 2.4.2). This step assumes the connectivity is fixed, while the next step UpdateConnec-
tivity considers an alternative tessellation and switches to that one if a lower cost is promised
by that (Section 2.4.3). Finally, a new mesh complying with a given image is generated, when
the mesh converges according to the given measure in Section 2.4.5. PostProcess ensures that
the resulting elements have acceptable aspect ratios as later discussed in Section 2.6.6.

2.5 Results

A 2D slice from MR image data of the brain is shown in Fig. 2.6(a). Figures 2.6(b)-(e) present
image discretizations by the initial and final meshes for two sample optimizations at different
mesh resolutions. The converged mesh of the latter case is seen overlaid on the initial image in
Fig. 2.6(b). Similarly, the image and the discretizations from two optimizations for a 2D CT
slice of the kidney are presented in Fig. 2.7. The figures referred as initial and final meshes
throughout this section denote the configurations before and after the application of our cost
minimization technique presented. It is seen in these figures qualitatively that, once a mesh is
optimized using the technique presented, a superior image representation is achieved even when
a relatively coarse mesh is employed. The reduction in cost for these examples are presented
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Figure 2.6: Mesh optimization on a 2D MR image slice (a) of brain ventricles. Initial (b) and
optimized (c) discretizations using 59 nodes (both having 96 triangles); and initial (d) and
optimized (e) discretizations using 111 nodes (both having 192 triangles). The finer optimized
mesh is also shown overlaid on the image (f).

numerically later in this section. The minimization of this combined cost indeed quantitatively
confirms a better image representation for a given mesh resolution.

The feasibility of our method is next demonstrated in 3D. The initial and final meshes of
a synthetic phantom with a spherical inclusion are seen in Fig. 2.8. For the presentation of 3D
results, along with cutaway views of the meshes, segmentations of corresponding anatomy of
interest using a simple operation of element thresholding are also presented. This thresholding
method is detailed in Section 2.6.1.

Slices from a 3D MR image volume of brain ventricles are seen in Fig. 2.9(a) with part of
the mesh that was used to initialize the optimization presented in this figure. Initial and final
cutaway views along with ventricle meshes thresholded as described above are also shown in
Fig. 2.9, where the shading of each element face indicates the discretized ℎ̃𝑗 value within that
element. In Fig. 2.9(h), the final thresholded mesh is seen embedded within the cutaway view.
Similarly, Fig. 2.10 presents mesh optimization within a 3D CT volume of the kidney region.

The evolution of the combined cost values 𝐸 during the optimization of some of the exam-
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Figure 2.7: Mesh optimization on a 2D CT image slice (a) of the kidney. Initial (b) and
optimized (c) discretizations using 61 nodes (both having 100 triangles); and initial (d) and
optimized (e) discretizations using 338 nodes (both having 624 triangles).

ples presented in this chapter are plotted in Fig. 2.11. These were normalized to their initial
mesh quantities in order to present their change in percentage. The first and last iterations
in this figure correspond to the cost at the initial and final mesh configurations, respectively.
These are the meshes optimized using geometry alone and using geometry combined with im-
age compliance errors, respectively, for the medical imaging examples in previous figures. The
reduction of cost in all these examples implies that the mesh fits the image better when op-
timized by our method. Note that starting from a geometrically-optimal initial configuration
ensured by mesh initialization in Section 2.4.1, indicates that it is the image compliance compo-
nent that is minimizing over iterations. Meanwhile, the geometry component increases slightly
until a balance is reached for given weighting constant 𝜆. The image-compliance component
is driven from optimal partitioning (segmentation) literature and accordingly is intrinsically
indicates the fitting of a discretization to an image.
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(a) (b)

Figure 2.8: A 3D mesh optimization for a synthetic phantom image with a spherical inclusion:
(a) initial and (b) optimized meshes. In cutaway views of meshes (top), element shading
represents the discretized values of cut elements. The inclusion extracted from each mesh
using element thresholding is also seen (bottom).

2.6 Discussion

2.6.1 Element Thresholding for Segmentation

At any optimization iteration including the initial and converged ones, once the average mean ℎ̃
of the image voxels within every element are found, the elements below/above a given threshold
can be culled from the visualization. Subsequently, the remaining elements are grouped into
bins (objects of interest), so that any element can be reached from any other element in the
same object by only traversing through neighbouring element faces. Partitioning a discretized
mesh into sets of such connected regions presents a way of segmenting this mesh. The largest
such connected set is presented in the examples of this chapter as the mesh representation
of the anatomy of interest. Note that extracting a surface from these volumetric meshes is
not the focus of this thesis and more sophisticated methods can indeed be developed for this.
The thresholded mesh figures in this chapter are mainly presented for visualization purposes
in order to demonstrate the improvement with respect to the initial meshes.

Recall that our method balances two metrics in the volume, not only focuses on the image
compliance of the surface, therefore it is not fair to compare such surfaces extracted from
meshes with other surface segmentation methods such as active contours. Nevertheless, it is
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Figure 2.9: Mesh optimization for 3D MR image volume of the brain. Initial mesh with 410
nodes: (a) part of the mesh with some image slices from the voxel volume, (b)-(c) two cutaway
views showing discretized element values on faces, and (d) the thresholded elements. A solution
after 32 iterations for comparison with the initial mesh: (e)-(f) two cutaway views and (g) the
thresholded elements, where (h) presents these elements embedded in a cutaway view.

valuable to show that, once an image is meshed, if a (rough) surface/anatomy segmentation is
also needed, the presented thresholding method or others can be used to extract the anatomical
structures. Indeed, considering that these meshes are optimal representation of images at a
lower-resolution that the original voxel volume, such methods can run faster than conventional
voxel-based segmentations also enjoying the (optimal) smoothing effect due to discretization
in mesh elements.

2.6.2 Discretization of Known Elastic Modulus Distribution

In this section, the element discretization as the average mean in Section 2.3.2 is shown to be
consistent with deformation modeling using FEM. Therefore, using the proposed discretization
cost function indeed results in optimal FEM meshes minimizing the error due to parameter
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Figure 2.10: Mesh optimization for 3D CT data of the kidney. Initial mesh: (a) with some
image slices from the voxel volume, (b) a cutaway view, and (c) the thresholded elements. The
solution presented here converged in 25 iterations: (d) a cutaway view and (e) the thresholded
elements, where (f) presents these elements embedded in a cutaway view. The meshes have
420 nodes and more than 1600 elements.
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Figure 2.11: Combined cost 𝐸 during the optimization of the examples in figures 2.6, 2.7, 2.9,
and 2.10. In these corresponding figures, the mesh and the resulting image discretizations for
the first and the last iterations shown here were depicted as initial and final configurations,
respectively.

discretization.
For a linear stress-strain relationship, the elastic strain energy of a 4-node tetrahedral

element can be written in terms of the four corner displacements u𝑗 as:

𝐸𝑗
𝑠𝑡𝑟𝑎𝑖𝑛(u

𝑗) =
1

2

∫
𝜏 𝑗
u𝑗

𝑇
𝐵𝑗𝑇𝐶(x)𝐵𝑗u𝑗𝑑x (2.13)

where 𝐶(x) is the element material stiffness matrix and 𝐵𝑗 is the constant partial-derivative
matrix, which is derived using the integration of barycentric coordinates within the element
and hence is fixed for given tetrahedron corner positions [32].

In the conventional derivation of element strain energy, the material stiffness matrix is
constant within each element, i.e. 𝐶(x) = C𝑗 , since the material properties, Young’s modulus
and Poisson’s ratio, are discretized as constants in each element. Then, (2.13) leads to:

𝐸𝑗
𝑠𝑡𝑟𝑎𝑖𝑛(u

𝑗) =
1

2
u𝑗

𝑇
𝐵𝑗𝑇C𝑗𝐵

𝑗u𝑗
∫
𝜏 𝑗
dx (2.14)

=
1

2
u𝑗

𝑇
𝐵𝑗𝑇C𝑗𝐵

𝑗u𝑗𝑣𝑗 . (2.15)

where 𝑣𝑗 is the element volume.
C can indeed be written as a linear function of Young’s modulus, i.e. C𝑗 = ℰ̃𝑗 C′

𝑗 , where ℰ̃𝑗
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is the Young’s modulus discretization in this element. Consequently, (2.15) yields:

𝐸𝑗
𝑠𝑡𝑟𝑎𝑖𝑛(u

𝑗) =
1

2
u𝑗

𝑇
𝐵𝑗𝑇C′

𝑗𝐵
𝑗u𝑗 ℰ̃𝑗𝑣𝑗 . (2.16)

It is a common assumption to take the Poisson’s ratio constant in a soft tissue domain. This
is acceptable considering the nearly incompressible characteristic of soft tissues. However, the
Young’s modulus does often change substantially between different tissue structures. Assume
that this Young’s modulus distribution, ℰ(x), within the domain ℳ is known a priori. There
exist several methods in the literature for the acquisition and derivation of tissue elasticity, see
[33] for a review. Consequently, the material stiffness matrix in the element can be formulated
as 𝐶(x) = ℰ(x) C′

𝑗 . Substituting this in (2.13) yields:

𝐸𝑗
𝑠𝑡𝑟𝑎𝑖𝑛(u

𝑗) =
1

2
u𝑗

𝑇
𝐵𝑗𝑇C′

𝑗𝐵
𝑗u𝑗

∫
𝜏 𝑗
ℰ(x)𝑑x . (2.17)

For the discretization within each element to be optimal, these two energy formulations in
(2.16) and (2.17) should be equal, leading to:

ℰ̃𝑗𝑣𝑗 =

∫
𝜏 𝑗
ℰ(x)𝑑x (2.18)

which is satisfied when ℰ̃𝑗 is the mean of the distribution within element 𝜏 𝑗 .
To demonstrate mesh optimization from mechanical tissue features, the method was applied

to prostate elastography images acquired using the vibro-elastography technique of Salcudean
et al. [34]. Elastography is the technique in which tracked localized displacements in response
to a mechanical excitation allow for the identification of mechanical tissue properties [33, 35].
For the purpose of this chapter, a 2D sagittal transfer function image of the prostate is meshed.
A mesh of the prostate and the pelvic bone using this technique from a labeled voxel volume
is presented in Chapter 5 in the context of patient modeling for a prostate brachytherapy
training system. The prostate, which is typically stiffer than its surrounding, is seen as the
darker region in Fig. 2.12(a) with an initial mesh atop. When converged, this mesh takes the
form seen in Fig. 2.12(b).

2.6.3 Connectivity and Node Updates

The approximation accuracy of a mesh depends on the number of nodes/elements involved and,
due to the computational cost of FEM, often a limited number of nodes can be accommodated
in a simulation. Several meshing studies in the literature define an approximation performance
for each node, such as the distance to a given input surface, and continue adding nodes and
refining the mesh until a performance bound is met. The nodes are often added in a worst-
location-first order. The number of nodes can then be controlled by changing such performance
bounds, or stopping the node addition (element refinement) once a given vertex budget for the
desired application is reached.

In contrast, our method is initialized using the number of nodes allowed by the vertex
budget and, subsequently, the best locations for such nodes are determined during the opti-
mization process. Nevertheless, similarly to the other techniques above, more mesh nodes can
also be added at any point in our method, such as at the centroids of elements with the highest
error contribution.
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(a) (b)

Figure 2.12: Initial (a) and optimized (b) meshes of sagittal prostate vibro-elastography images.
The prostate is the darker oval structure in the center.

A mesh is defined not only by its node positions but also by their connectivity and there
exist mesh configurations with the same number of nodes such that one may not be reached
from the other only by changing node positions. Therefore, while minimizing the given energy
definition, different tessellations of given nodes should be considered as well. A full-blown
method that searches all possible tessellations of current node positions in order to minimize
the combined error 𝐸 is infeasible in practice. Alternatively, local mesh updates, such as
edge swaps/flips, can be utilized to find a better connectivity candidate minimizing 𝐸. Such
heuristic local mesh modifications often require significant implementation effort [24].

In this thesis, at every iteration, the Delaunay tessellation is considered as the single update
alternative to the current connectivity. This is an educated guess to update connectivity, since
the Delaunay tessellation is known to already minimize the geometric component of the error.
Each calculation of the error has a cost in terms of computational time due to numerical
integration over image voxels. Therefore, limiting this search for connectivity updates allows
our method to perform in a reasonable time. Furthermore, the use of Delaunay tessellation
was observed to yield successful final meshes in our examples. Note that, for a particular
application, it is also possible to fix the connectivity entirely and only optimize the node
positions for a given image.

For the case where the objective function is purely geometric, i.e. 𝜆 = 0, 𝐸𝐺 has a simple
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algebraic (quadratic) definition as seen in (2.3). This can also be observed for relatively small
values of 𝜆 as in Fig. 2.4(b). Consequently, the node position x𝑖 that minimizes 𝐸𝐺 alone
in the 1-ring neighbourhood Ω𝑖 is the critical point of function 𝐸𝐺. This minimizer point
x′𝑖, found easily using the derivative of 𝐸𝐺 with respect to x𝑖, is then used to update the
corresponding node location. Alliez et al. find the geometrical expression of this critical point
to be as follows [24]:

x′𝑖 =

∑
𝜏𝑗∈Ω𝑖

∣𝜏𝑗 ∣𝑐𝑗
∣Ω𝑖∣ (2.19)

where 𝑐𝑗 is the circumcenter of element 𝜏𝑗 and ∣ ⋅ ∣ denotes the volume. This formulation
suggests that the best node location for an update considering purely 𝐸𝐺 is the average of
neighbouring circumcenters weighted by corresponding element volumes. This is used during
the mesh initialization stage of our method, where only the geometric cost is minimized. Such
initial meshes can indeed be precomputed without requiring any image data once the domain
size and mesh resolution are known. Alternatively, structured meshes can also be used to
initialize the method. Furthermore, it is also possible to start with such a minimizer mesh of
one cost component and gradually change the optimization goal by increasing 𝜆 until a desired
image compliance is reached.

The component 𝐸𝐺 can be rapidly computed algebraically using (2.3), where the second
term (volume integral) has a closed-form definition for the rectangular/quadrilateral shaped
image domains in this chapter. However, the combined 𝐸 is a function of the image as well
and thus is not algebraically defined in a simple form preventing us from using a closed-form
update location as for 𝐸𝐺 alone in (2.19). Furthermore, contrary to common methods in image
processing, it is also difficult to infer the change of 𝐸 from image-derived values such as the
image gradient. This is because such values at a node location do not necessarily characterize
the change in 𝐸, which is actually caused by the way that the 1-ring element faces sweep
through the image voxels, changing voxel variances within those 1-ring neighbours. Due to the
lack of a closed-form derivative for 𝐸 or a direct relation to an image-derived value, we resort
to numerical derivation in implementing an optimization scheme minimizing this objective
function. During this process, the voxels enclosed by each element are determined using the
barycentric coordinates of voxels within the bounding box of this element. This mapping
of voxels to their enclosing elements is the computational bottle-neck of our method. This
operation can be accelerated using grid-point location approaches such as [36, 37].

Considering the two node update strategies proposed, the former one based on the con-
strained optimization takes considerable computation time since several recomputations of 𝐸
locally within Ω𝑖 are required for each node update. Our observations have indicated that
finding such exact optimum locations locally is not essential within the overall scheme of the
optimization. This is because this optimum location also depends drastically on the positions
of the immediate neighbouring nodes defining the 1-ring region. If these neighbouring nodes
are also updated at the same iteration, this often results in all the nodes being sub-optimal in
their updated locations. Alternatively, only the nodes with disjoint 1-rings were optimized at
each iteration. Such nodes were picked randomly or chosen from the ones with the highest cost
contributions. In most cases, such a treatment still requires a substantial number of iterations
to converge. Note that the gradient descent approach presented before requires a constant
number of computations per node update. In our examples, that approach yielded superior
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meshes in a given time and therefore is used in the results presented. Nevertheless, using the
given objective function formulation, it is possible to implement other numerical techniques
and optimization strategies such as the conjugate gradients method.

In this thesis, the initial nodes in the corners and along the edges of the given rectangular
prism shaped domain are kept fixed during the optimization process and the nodes on faces
are allowed to move only tangentially. The position of the internal nodes are optimized as
described. These constraints can be relaxed and non-prism domains can be accommodated
using (outer) domain-boundary complying techniques in [24].

2.6.4 Mesh Sizing

In order to achieve a desired local mesh-size, Alliez et al. proposes to modify (2.19) to re-
define the element volume as a weighted volume for a background density distribution [24].
Using this simple treatment, they produce smaller elements to model higher curvature sur-
faces. A similar approach can be used to effectively refine FEM meshes at locations of smaller
anatomical features or higher strain regions. For instance, consider the synthetic image in
Fig. 2.13(a) representing two circular anatomical features of different sizes. A standard op-
timization presented in this chapter starts from an initial uniform mesh distribution such as
in Fig. 2.13(b), which subsequently converges to Fig. 2.13(c). Note that the small feature in
the center is not represented well using this uniform mesh. A mesh sizing field (density func-
tion) shown in Fig. 2.13(d) can be imposed increasing the element resolution in the center as
demonstrated in Fig. 2.13(e). An optimization initialized with this specially-crafted nonuni-
form mesh is observed to successfully model the small feature in the center. Note that although
the overall number of nodes/elements are the same in these uniform and nonuniform meshes,
the nodes/elements are concentrated where they are actually needed in the latter one.

In order to develop such a varying mesh resolution approach for medical images, the desired
sizing function has to be determined such as by extracting the features of interest. Alterna-
tively, such sizing can be integrated into the optimization process using an adaptive method
such that the mesh density around elements with high intensity variation is increased.

2.6.5 Resolution

Considering mesh element size, one should note that it cannot be refined arbitrarily for a
given image resolution. This is because, as the element sizes decrease, the number of voxels
enclosed by each element also decreases. This affects the robustness of the optimization process
that relies on the numerical integrations. This can also be seen considering the limit case of
having less than one pixel per element. In this chapter, the medical images are resampled
(upsampled) as needed in order to provide a minimum required number of voxels on average
per element, which was observed to be around 50-200 voxels/tetrahedron (depending on the
image modality) in our implementation. However, also note that a high number of voxels slows
down the cost computation. In tailoring our method for a given application, one should keep
in mind that the computation time will depend on this balance between desired FEM mesh
size and desired image representation accuracy. As an alternative to a full-blown numerical
integration in cost computation, other schemes such as a variance approximation from multiple
element quadrature points can also be employed.
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(a) (b) (c)

⊕

(d) (e) (f)

Figure 2.13: Demonstration of using a sizing field for variable element sizes throughout the
domain: (a) synthetic image, (b) initial and (c) optimized meshes with uniform element sizing;
(d) the image and the element sizing field to be imposed; (e) initial and (f) optimized meshes
with the application of this sizing field.

2.6.6 Slivers

In our simulations, the geometric quality of elements, that are initially improved during the
geometric initialization step, are kept of high quality while the elements are being aligned
to conform to the image. However, in rare cases, a sliver may appear when it substantially
minimizes 𝐸𝐷. Consider the case in Fig. 2.14(a) where a sliver is shown with its neighbouring
elements. If there is an anatomical surface along the plane of this sliver causing contrast
between the upper and lower elements, then this connectivity and node positions can indeed
be a local minimizer since other options such as an edge connecting 𝑃1 and 𝑃2 would result in
elements with large intensity variance.

If control over the worst element geometry is desired in a particular application, these slivers
can be avoided by using a lower value of 𝜆 so to emphasize geometrical quality. Alternatively, a
node may be added at the centroid of such elements and the following local connectivity update
may be performed: All neighbouring elements seen in Fig. 2.14(b) are divided in two using this
new node to be a corner. This is also applicable when there are other elements between the
two upper/lower face neighbours. This procedure generates faces cutting the equatorial plane
of the sliver that are likely desirable to conform to the anatomical surface along that plane.
Indeed, 𝐸 is guaranteed to decrease by this update since (𝑖) addition of a node reduces 𝐸𝐺

due to the introduction of a new quadrature point to the linear function approximant and (𝑖𝑖)
𝐸𝐷 is also reduced since the face neighbours are all divided in two reducing their variances.
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(a) (b)

Figure 2.14: A sliver and its four face neighbours (a). The four neighbouring tetrahedra are
shown individually (b).

When a strict vertex budget is not a concern, this procedure can be used to remove the few
lowest-quality tetrahedra. The application of this sliver removal on the final meshes obtained
by the standard techniques presented in Section 2.4 resulted in approximately an additional
1% reduction in the final normalized energy figures reported in Fig. 2.11. It is also possible to
use other common sliver exudation techniques [26].

2.6.7 Mesh Quality Assessment from Aspect Ratios

In Fig. 2.15(b), the evolution of the aspect ratio error (1 − 𝜌) is seen as the methods of this
chapter are applied to the 3D brain MR example in Fig. 2.9. Figure 2.15(a) shows the average,
quadratic, and maximum mean values of the element aspect ratio errors that are computed
at each major processing step. The purpose of this figure is to show that the aspect ratios
of elements, which are initially improved during the geometrical optimization phase, are still
kept of high-quality as the overall error is minimized next. The slight increase in average
and quadratic means in the combined error optimization phase are due to the elements fitting
the given image. Note that this better image fitting, both observed in the example images
presented throughout this chapter and also presented quantitatively by the minimized error in
Fig. 2.11, does not result a significant degradation of the overall aspect ratios of elements.

The mesh quality can be better seen in the aspect ratio histograms shown in Fig. 2.15(a).
These histograms represent three snapshots of the quality distribution over the mesh elements,
the evolution of which was presented in Fig. 2.15(a) in a compact form using mean values. These
histogram snapshots present mesh quality at critical processing instants: (𝑖) geometrically
optimal mesh (initial mesh), (𝑖𝑖) optimized mesh after 32 iterations using 𝜆 = 25%, and (𝑖𝑖𝑖)
following a final sliver elimination procedure. The time instants (𝑖) and (𝑖𝑖) are represented
by the vertical lines in Fig. 2.15(a).
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Figure 2.15: Mesh quality assessment from aspect ratios: (a) Average, quadratic, and maxi-
mum mean of aspect ratio error distributions, (1 − 𝜌), are plotted for each iteration. These
present a minimal decrease in the aspect ratio as the mesh is optimized to fit the image. In
order to illustrate the effect of our optimization, the geometrical and combined error optimiza-
tion iterations, as well as each sliver removal, are displayed as an iteration, although each such
step is a significantly different operation in nature. (b) Histograms of element aspect ratios 𝜌
of initial and optimized meshes. These demonstrate minimal mesh quality decline after image
fitting. The histogram of elements following a sample case of posterior sliver removal is also
presented here, where the elimination of few peaks (low-quality elements) around 𝜌 = 0.2 can
be observed.

In this example, any sliver elimination was postponed until the end of standard optimiza-
tion. In this final stage, 10 slivers were removed in this case. In Fig. 2.15(a), for presentation
purposes, each sliver removal mesh update is also shown as if it was an optimization iteration.
The choice of mean value representation was to better present its change at various stages of
our method. Both in the histogram figure and the proposed mean value evolution plot, it is ob-
served that the overall aspect ratio improvement, gained during the geometrical initialization
phase, is kept to a great extent during our main optimization phase. The slight quality decline
at this stage was expected due to elements fitting the image. In the final sliver removal phase,
some lowest quality tetrahedra were eliminated successfully. In practice, sliver elimination can
also be done as part of each optimization iteration.

2.6.8 Relationship to deformation and FEM

There exist methods as part of FEM post-processing that can refine or modify a mesh based
on a computed simulation output such as element strains during deformation. This requires
running the simulation first, which in turn necessitates a priori knowledge of the boundary
conditions. These may not be known prior to meshing, or their location and nature may change
substantially from simulation to simulation, e.g. as medical tools interact with the anatomy.
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Moreover, although post-process refinement techniques adjust node/element density locally,
they do not formulate an intrinsically optimal placement for an element. Unlike in mechan-
ical/civil engineering, larger deformations are involved in medical simulations and simulation
accuracy around important anatomical features are often preferred over accuracy at high-strain
regions (which are mostly the medical tool contact points). Our proposed method optimizes
meshes assuming that there is no prior knowledge of the boundary constraints.

Advances in ultrasound and MR-based elastography offer significant potential for our
method, since elastography-recovered tissue values can be assigned to mesh elements for sub-
sequent FEM use with minimal loss of information during discretization. In this chapter, a
vibro-elastography image meshing example is provided in Fig. 2.12. There is substantial work
in the literature on the identification of mechanical tissue features such as the tissue elastic
modulus from such elastography data [33], which is beyond the scope of this thesis.

2.7 Conclusions

In this chapter, a penalty function based on FEM interpolation error is combined with a pro-
posed image-representation cost and the combined objective function is minimized to produce
high-quality FEM elements that also discretize a given image in a desirable manner. With
the emerging fields of elastography imaging and tissue parameter identification, this method
becomes essential for optimal meshes conforming to such parameters. Note that such an opti-
mized discretization can further be used for a fast approximate segmentation since optimized
elements represent an image using far fewer degrees-of-freedom than the underlying pixels.
The method was presented both in 2D and 3D using synthetic data, MR images of brain, CT
images of the kidney, and elastography imaging of the prostate.
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Chapter 3

B-Mode Ultrasound Image
Simulation in Deformable 3D
Medium 4

In a prostate brachytherapy procedure, the performing physician uses TRUS imaging both for
registering the intra-operative prostate volume to the pre-operative planning images and for
following the needle in tissue to ensure accurate placement of seeds at planned locations. There-
fore, the simulation of this imaging modality is essential in developing a training simulator.
Considering the tissue deforms in brachytherapy during needle insertions, such a simulation
must be capable of incorporating deformation and produce images in real-time.

This chapter describes a general methodology of simulating B-mode images. A prostate
brachytherapy implementation of this simulation technique is later presented in Chapter 5 for
simulating TRUS images of the prostate in the existence of deformations caused by needle
interactions.

3.1 Introduction

Ultrasound is a non-invasive and safe medical imaging modality and hence one of the most
commonly used examination tools. However, image anisotropy and the existence of various
significant artifacts cause the need for extensive echographer training. Current standard ed-
ucation is in the form of supervised examination of real pathologies during clinical practice.
Despite its many advantages, this approach involves significant time expenditure of qualified
personnel and can only be performed when a supervisor and a patient are available. Further-
more, training on rare pathologies poses a problem. Indeed, students have the chance to learn
only 80% of the important pathologies during one-year of standard education [1]. This need
for ultrasound examination training has motivated several computer-based simulation environ-
ments [2]. In addition to examination, training of medical procedures that utilize ultrasound
imaging, e.g. prostate brachytherapy and breast biopsy, can also significantly benefit from
such simulation techniques. The ability to mentally register two-dimensional (2D) image slices
within the three-dimensional (3D) anatomy is a non-trivial skill required by any sonographer.
Real-time ultrasound simulators have the potential to accelerate and improve such training.

In a typical ultrasound simulation scenario, the user must be presented with an image slicing
the target anatomy. In an actual diagnostic or operative procedure, such target anatomy
is often deformed under various forces, such as ultrasound probe contact, as illustrated in

4A version of this chapter has been published. O.Goksel and S.E. Salcudean, “B-Mode Ultrasound Image
Simulation in Deformable 3-D Medium,” IEEE Transactions on Medical Imaging, 28(11):1657-1669, Nov 2009.
DOI:10.1109/TMI.2009.2016561
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Figure 3.1: Image slices (a) before and (b) after a deformation caused by probe pressure; and
(c) illustration of deformation during needle insertion.

Figures 3.1(a) and 3.1(b). Note that an ultrasound probe only compresses the surface of the
tissue, whereas there exist other medical tools that further manipulate the tissue internally,
e.g. percutaneous needles as in Fig. 3.1(c). A realistic image simulation should take such tissue
deformations into account in order to deliver an immediate representation of the anatomy in
its current deformed configuration.

Modeling of tissue deformation has been studied extensively in the literature [3–6]. Com-
mon techniques such as mass-spring models and the Finite Element Method (FEM) use a
discretization (mesh) of the tissue volume and corresponding elasticity parameters to approxi-
mate its behaviour under load. In general, these model parameters are abstracted a priori and
used with given forces in real-time to compute deformation, which is commonly expressed as a
set of displacements of the given mesh nodes. To enable a real-time computation of deforma-
tion, this discretization often has a significantly coarser structure than the typical resolution of
medical imaging modalities. This chapter presents an image generation technique in deformed
3D meshes and addresses the computational challenges for real-time performance. Realistic
simulation of ultrasound, which is a real-time imaging modality, is the primary target appli-
cation of our image generation technique. While the image slicing methodology we propose is
described for B-mode ultrasound, it also applies to other modalities such as MR and CT.

The chapter is organized as follows. First, our choice of interpolation procedure, which
consists of finding the image pixel intensities by referring their positions back to the nomi-
nal pre-deformed configuration, is introduced. Then, its application within meshes that are
deformed based on the FEM is outlined in 2D. Next, the pixel location problem that arises
in such a scheme and our proposed numerical treatment for this are presented in 3D. In the
results section, the proposed technique is demonstrated for real-time ultrasound synthesis in a
tissue-mimicking ultrasound phantom and in-vivo thigh data deformed by the ultrasound probe
itself. A discussion of the limitations and possible future extensions conclude this chapter.
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3.2 Previous Work

An ultrasound simulator necessitates rapid and realistic image rendering of deformed tissue in
response to probe or tool manipulation by a trainee. There exist two major approaches for
simulating B-mode ultrasound images, the generative approach and the interpolative approach.
The former simulates the ultrasonic wave propagation by using accurate models of the probe,
the tissue scatterers, and the wave interaction [7, 8]. Generating a single B-mode frame using
this technique takes hours. Thus, this approach is not suitable for real-time applications. Fur-
thermore, in practice it is not possible to extract an exact scatterer model of a complex medium
such as the tissue and hence the images generated with this technique typically look artificial.
The latter approach generates images by interpolating from pre-acquired images of the vol-
ume. While interpolation directly from arbitrarily-oriented B-scans was demonstrated in [9],
the construction of a regular-grid reference volume, called 3D ultrasound reconstruction [10,11],
is commonly the preferred method because it enables data processing with off-the-shelf algo-
rithms. UltraSim [12], which is one of the first commercial ultrasound image simulators, and
several others [13–18] follow this latter approach. Refer to [2] for a review on ultrasound
training simulators.

Note that anisotropic image artifacts, such as shadowing and reverberation in ultrasound,
may not be reproduced correctly by an interpolation scheme due to their direction-dependent
characteristics. One attempt to remedy this shortcoming is to acquire real ultrasound images
of the volume at several positions/orientations. Subsequently, for a given probe location during
simulation, the image that corresponds best with that orientation can be selected from that
database and shown to the user. This is not feasible in practice due to the unlimited number
of possible probe and/or medical tool configurations during a simulation [1].

Since a generative simulation approach with a full-blown wave interaction model is not fea-
sible for real-time applications, some recent work has focused on developing heuristic models
that can be computed in real-time. Some researchers looked at the problem in the context
of computer graphics, such as first texture mapping different tissue regions by pre-computed
backgrounds, then imposing a Gaussian noise to generate an artificial speckle pattern, and
finally applying a depth-dependent radial blurring to simulate a convex probe [19,20]. Others
proposed processing imaginary rays mimicking ultrasound using heuristic interaction functions
defined for coarse (pixel level) tissue representations with abstracted parameters, namely atten-
uation, reflection, and scatterer power [1]. Unfortunately, the adjustment of such parameters
was not addressed in this work. Deriving parameters from CT data was also proposed in [21]
and in [22], separately, in order to generate ultrasound images by processing CT images. Al-
though such pseudo-generative methods for echography simulation are appealing, due to the
substantially complex nature of actual wave interactions, it is extremely difficult to gener-
ate even common ultrasound phenomena, such as speckle formation, using these methods, let
alone realistic images. As a result, existing simulators that are studied for clinical training
scenarios [2, 12, 13, 15–18] are interpolation-based.

In many medical procedures, such as prostate brachytherapy [5], brain surgery, or breast
biopsy, significant deformation is caused by medical tools or by the ultrasound probe. In certain
applications, such as in the diagnosis of deep-vein thrombosis (DVT), deformation observed
in ultrasound images during deliberate probe indentation contains essential diagnosis informa-
tion. Fast synthesis of ultrasound images in soft tissues under deformation will facilitate the
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Figure 3.2: Online and offline steps of the proposed interpolation-based simulation.

development of training simulators. With this goal, a DVT diagnosis simulator was proposed
in [18]. It simulates the probe pressure by first slicing an image from the 3D ultrasound data
set and then applying a 2D elastic deformation to this image using quadtree-splines. This 2D
in-plane deformation is pre-computed offline by registering the segmentations of pre-deformed
and post-deformed anatomy of a test case [23].

Real-time ultrasound image slicing using physically-valid 3D deformation models has not
been addressed in the literature. Our work is motivated by this need. A recent work applies
similar techniques to generate ray-traced volume rendering of a deformable liver model [24].

For a deformed-volume image slicing strategy, as illustrated in Fig. 3.2, a reference volume
dataset is required. The reference image volume can either be obtained using a 3D ultrasound
probe or, alternatively, it can be constructed from individual 2D B-mode slices. This 3D
ultrasound reconstruction has been studied extensively in the literature [10, 11, 25, 26]. Given
this reference volume and a mesh-based deformation model, the image synthesis component
(Fig. 3.2) of an ultrasound simulator is the subject of this chapter, preliminary results of which
were presented earlier in [27, 28].

3.3 Methods

Let the spatial voxel locations of an 𝑖 × 𝑗 × 𝑘 3D regular grid be 𝑉 0, where the superscript
zero refers to this being the initial (time-zero) configuration of these voxels. Assume that 𝑉 0

are the locations of a given reconstructed volume, in other words, the locations at which the
intensities (also known as the gray-values) 𝐼0(𝑉 0) are known a priori (see Fig. 3.3(a)). Note
that the illustrations in Fig. 3.3 are given in 2D for the ease of presentation, although they
represent 3D concepts.

Let 𝑉 0 be transformed to 𝑉 by the deformation 𝑓(⋅) at a given simulation instance as
follows:

𝑉 = 𝑓
(
𝑉 0
)

(3.1)

as shown in Fig. 3.3(b). Throughout this chapter, these two states 𝑉 0 and 𝑉 are referred as
the pre-deformed and the deformed tissue configurations, respectively.
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Figure 3.3: Voxel data and image plane in (a) nominal, (b) post-deformation, and (c) unde-
formed configurations in 2D (circles denote the image pixels and squares denote the volume
data voxels).

Consider an image, formed by a set of 𝑛 planar equidistant pixels 𝑃 , cutting this deformed
volume 𝑉 . Such an image is shown with circles in Fig. 3.3(b). Synthesizing this image involves
finding the immediate intensity values 𝐼(𝑃 ) at these 𝑛 pixel locations for every image frame
to be displayed on the screen. Note that this operation has a lower bound of Ω(n). Indeed,
any algorithm processing an entire image (even just simply displaying it on screen) needs to
access all 𝑛 pixels proving this lower bound.

3.3.1 Inverting Deformation

One approach to the image synthesis above is to first compute the deformed voxel loca-
tions 𝑉 and then to find (interpolate) the pixel intensities 𝐼(𝑃 ) within the known values
of 𝐼(𝑉 ) = 𝐼(𝑓(𝑉 0)). Note that similar deformation computations are employed by common
elastic registration techniques [29, 30].

As seen in Fig. 3.3(b), the major disadvantage of the approach above is that the deformed
voxels 𝑉 no longer lie on a regular-grid structure. Consequently, computationally-expensive
scattered-data interpolation techniques are needed. Another disadvantage is the need to trans-
form the entire voxel volume from 𝑉 0 to 𝑓(𝑉 0) for each image frame. This is not practical.
Indeed, the interpolation step does not demand the entire volume, since only the voxels near
the image pixels have an effect on their intensity values 𝐼(𝑃 ). Therefore, it is theoretically
possible to compute only the deformation of such nearby voxels—a small subset of 𝑉—as re-
quired by the particular interpolation technique used. Hence, if this approach is to be used, an
effective way of identifying this subset is needed. Determining computational bounds for such
a method is difficult, since this subset is not fixed and it changes with both the deformation
and the image location.

Due to the above disadvantages, the following approach of first mapping the image pixel
locations back to the pre-deformed configuration and then interpolating the regularly-spaced
𝐼0(𝑉 0) at these undeformed pixel locations is proposed in this thesis. For an invertible defor-
mation 𝑓 , the pixel locations 𝑃 can be mapped to the reference volume as:

𝑃 0 = 𝑓−1(𝑃 ) . (3.2)
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An illustration of such undeformed pixels with the reference volume voxels 𝑉 0 can be seen
in Fig. 3.3(c). Subsequently, the pixel intensities 𝐼0(𝑃 0) at these nominal pixel locations are
interpolated from 𝐼0(𝑉 0).

With this method, the required interpolation is on a regular-grid of known values, which
enables the use of well-studied simple and fast interpolation techniques. Furthermore, as
opposed to the former approach, the inverse deformation needs to be computed only for the
image pixels, which yields a fixed number of computations for the synthesis of each frame
regardless of the deformation and the image location.

3.3.2 Image Pixels in an FEM Tessellation

Many deformation models employ a mesh to simulate displacements during deformation. One
of the most common methods for tissue deformation computation is the FEM, in which tes-
sellations are typically much coarser than medical imaging resolutions due to computational
constraints. Mesh-based models simulate deformation in the form of node displacements of the
overlaid mesh, so the deformation 𝑓 is only defined at the nodes. The displacement of other
locations within the mesh can be approximated from these node displacements. For example,
for tetrahedral meshes, barycentric coordinates can be used for this purpose. Consider the
situation in 2D, where an image 𝑃 slices an object deformed under constraints shown with
the arrows in Fig. 3.4(a). For each image pixel 𝑃𝑖 (𝑖 ∈ 1..𝑛), once its barycentric coordinates
with respect to the deformed element 𝑒𝑠 enclosing this pixel are found, they point to the cor-
responding 𝑃 0

𝑖 in the pre-deformed configuration (details in Section 3.3.4). Accordingly, for a
computed mesh deformation and a given probe position/orientation, our image frame synthesis
consists of the following basic steps:

∀𝑖 ∈ {1..𝑛}
I. Find the element 𝑒𝑠 enclosing 𝑃𝑖

II. Find the location 𝑃 0
𝑖 using its barycentric coordinates and

the node displacements of 𝑒𝑠
III. Interpolate the given data 𝐼0(𝑉 0) at 𝑃 0

𝑖

Figure 3.5 presents a flowchart showing the data flow between these steps and the data inter-
action with the deformation model.

Steps II and III above are constant-time operations, for which there exist well-studied fast
implementations. However, the point location problem of step I is computationally demanding
and hence the bottleneck of this technique. Note that the enclosing element of an image pixel
depends on both mesh deformation and the image position/orientation; hence, it needs to be
computed at each time instant 𝑡 and cannot be decided offline.

In computational geometry, the 2D point location problem has been studied extensively [31],
resulting in common techniques such as slab decomposition [32], Kirkpatrick’s algorithm [33],
and trapezoidal maps. However, only a few of these methods extend to higher dimensions,
i.e., point location in 3D spatial subdivisions. Furthermore, most techniques focus on either
locating a single point or a set of points scattered over the given domain, whereas the points in
our case—the image pixels—are regularly-spaced on a 2D planar surface that is embedded in
3D. Consequently, exploiting this property of our problem to build intermediate data structures
for locating all image pixels cumulatively will accelerate the process substantially. Indeed, any
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Figure 3.4: Mesh-based image undeformation illustrated in 2D: (a) image slice within a mesh
that is under force/displacement constraints; and (b) corresponding image pixels mapped to
the nominal mesh, where the reference volume is given on a regular-grid structure.

conventional method of locating each point individually would not allow real-time processing
of typical medical image resolutions. For instance, the point location routine in the QuickHull
package [34] locates the 90K pixels of a typical image presented in our Results section in over
30 s. Therefore, the rest of this chapter focuses on exploiting this spatial relationship of image
pixels in order to accelerate step I above.

3.3.3 Fast Equidistant-Point Location on Image Planes in 3D

Due to the 3D mesh elements being much larger than the image pixels, numerous neighbouring
pixels are enclosed by a single element that is cut by the image. This fact can be exploited
to predict the enclosing element of a pixel from its pixel neighbours. Although this yields
a significant speed gain, it is still not fully taking advantage of the known grid structure of
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Figure 3.5: Basic steps of the proposed algorithm.
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the pixels. Even though most predictions will succeed, each prediction has to be verified by
an operation such as point-in-tetrahedron check, requiring many additional operations. For
failed predictions, finding the enclosing element is again the same non-trivial point location
problem above. Therefore, an temporary data structure is proposed for each frame such that,
following the construction of this data structure, each and every pixel is located accurately
and immediately, i.e., in constant time.

Consider the faces of the mesh elements intersecting the image plane. Note that the mesh-
image intersection is the only information needed to locate all image pixel points. Indeed,
when moving from a pixel to its neighbour, if no intersection is crossed, the latter pixel still
lies in the same element, otherwise, it lies in a different element that can be deduced from
the intersection information. Thus, using a scan-line approach, we determine to which mesh
element each of the pixels belongs by traversing the image. The traversal occurs along a line
parallel to an arbitrary axis, e.g. the axial direction of the ultrasound imaging plane.

The conventional slab decomposition technique for point location, also called the parti-
tioning scan-line algorithm, locates individual (possibly scattered) points in a domain using
edge comparisons along a scan-line. In contrast, in our case of an image domain, pixels are
positioned at discrete locations, and therefore scan-lines only sweep discrete columns. In this
thesis, this discrete pixel structure is utilized to efficiently store the mesh intersection informa-
tion such that the image intersections with mesh faces are discretized at the pixel locations and
are stored for use during line scans. Such a data structure that substantially accelerates the
overall image generation procedure is built temporarily prior to every frame being synthesized.

Let us demonstrate a simple 2D case in Fig. 3.6(a). Assume that the pixels just below
the mesh intersections, shown with stars, are identified and marked with the corresponding
element numbers as depicted. For a downwards traversal (scan) of the image, it is inherent
that any pixel encountered on and after a marked pixel is guaranteed to be in that marking
element until another marked pixel is encountered. Implementing such a data structure to store
the discretized mesh intersections (shaded pixels) requires at most 𝑂(𝑛) storage. Although in
practice these marked pixels will be a small fraction of the image pixels, allocating an array the
size of the image is computationally more efficient and is not demanding on today’s computers.
So, the discretized mesh intersection information can also be seen as an added property to each
pixel, specifying whether it is being intersected by a face and, if so, by which element’s face.

Finding the pixels to mark in a 2D case, e.g. the darker circles in Fig. 3.6(a), involves
solving for line-line intersections of element edges with the image. Similarly, the intersections
of 3D element faces with a planar image can be found in 3D using the deformed-mesh node
positions and the image plane equation. However, further processing is required to discretize
and mark them on image pixels.

Tetrahedral elements are chosen for presentation in this thesis due to their common use in
tessellations. A tetrahedral element intersecting the image is shown in Fig. 3.6(b). Note that
a tetrahedron may intersect a plane in one of two possible configurations yielding a triangular
or a quadrilateral cross section as illustrated in Fig. 3.6(c). Using the deformed node positions
and mesh connectivity, the element edge intersections shown with stars in Fig. 3.6(b) are found
easily solving line-plane intersections. Subsequently, the line segments connecting these stars
need to be discretized and marked on the corresponding pixels. Recalling our downwards
scan-line direction, only the upper line segments (shown with darker lines for the instance
in Fig. 3.6(b)) need to be marked. This is due to the fact that the top-half of any cross-
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Figure 3.6: The intersection of a mesh and the image plane: (a) Marked image pixels close
to projections of element borders (stars) on a 2D mesh; (b) a tetrahedral element intersecting
the image plane; and (c) two possible configurations for a planar cross-section of a tetrahedron
with either 3 or 4 edges intersected.

section has to be first crossed by the scan-line in order for it to reach the interior of the
cross-section. Similarly, once leaving this cross-section, the top portion of the next element
below will be crossed indicating that the up-coming pixels do not belong to the previous
element anymore. Therefore only marking the edge of elements in the direction of an incoming
scan-line is sufficient.

Let us demonstrate this pixel marking for a tetrahedral mesh sliced by an ultrasound
image plane in Fig. 3.7. The 3D view in Fig. 3.7(a) shows the element cross-sections. The
discretization of these face intersections on the image pixels, which is the above-mentioned
intermediate data structure, is seen in Fig. 3.7(b). Part of this structure is illustrated enlarged
in Fig. 3.7(c), where the actual face intersections are depicted with dashed-lines and their
pixel discretizations with coloured circles. The element numbers marking these pixels are also
labeled in the figure.

Bresenham’s line drawing algorithm is used to discretize these segments on the grid of image
pixels [35]. Note that it is possible for more than one intersection segment to be discretized
on the same pixel. Although this is more likely to occur at the corners of the polygons,
it can extend to more pixels of a line depending on the relative slopes of neighbouring line
segments. For instance, consider the central pixel 𝑃 shaded in Fig. 3.7(d), which is involved
in the discretizations of both the elements 𝑒6 and 𝑒7. If this pixel were to be marked as
belonging to 𝑒6, then our line scan would mis-locate any pixel in the column below 𝑃 . Such
discretization conflicts, where the same pixel is involved in the discretization of more than one
edge intersection, may occur at a substantial number of pixels and each may involve many
edges. Therefore, a mechanism is required to ensure that such pixels are marked correctly. In
this thesis, we resort to a method of topologically sorting all the tetrahedra cross-sections prior
to marking them. The details are explained in Appendix B.
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Figure 3.7: Marking mesh elements cross-sections: (a) A mesh and cross-sections of the ele-
ments sliced by the image simulated for an ultrasound probe; (b) element boundaries discretized
and marked on the image prior to the interpolation; (c) a close-up to this marked image; and
(d) a pixel of conflict, that is to be marked according to the scan direction.
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Figure 3.8: Transformations that map a pixel to the reference voxel volume, where an inter-
polation 𝑔(⋅) finds its intensity value.

3.3.4 Finding the Pixel Intensity Value

Each 3D pixel location is mapped to the reconstructed image voxel volume, where its inten-
sity can subsequently be interpolated. The deformation part of this mapping is addressed
using the barycentric coordinates with respect to the enclosing element. The overall mapping
from the discrete image plane coordinates to the reconstructed volume coordinates can be
expressed as a combination of linear transformations as shown in Fig. 3.8. In this figure, 𝑇𝑉 𝑃

is the image-to-mesh transformation, which is determined by the probe position/orientation
and hence is constant for all pixels of the same image frame. 𝑇𝑒𝑠 is the deformed-to-nominal
mesh transformation defined by the node displacements of the enclosing element 𝑒𝑠 due to the
deformation. This transformation is constant within an element for the mesh-node displace-
ments of that given instant and it is calculated using barycentric coordinates [36] as described
in Appendix C.

Note that 𝑇𝑉 𝑃 changes with probe motion, whereas 𝑇𝑒𝑠 with deformation. Consequently,
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a cumulative transformation:
𝑇𝑠 = 𝑇𝑒𝑠𝑇𝑉 𝑃 (3.3)

can be computed for any given element 𝑒𝑠 during the image synthesis of a given probe posi-
tion/orientation within a known/simulated deformation. Since any pixel within that element
is subject to this same transformation, it is calculated only once per intersected element per
image frame.

3.3.5 Summary of the Proposed Algorithm

For the synthesis of every frame, first the set of elements that are intersected by the imaging
plane is compiled. This set 𝐿 is composed by traversing the elements in the plane using a
3D mesh element neighbourhood list, which is pre-compiled offline as soon as a 3D mesh is
available. Note that the neighbours of an element do not change with deformation. Therefore,
given an intersected element, such a list enables us to deduce its neighbours that are also
intersected by observing which face of the current element intersects the image plane.

The set 𝐿 is then sorted topologically and the top-halves of the element projections are
discretized and marked on the image in that sorted order using Bresenham’s algorithm. Fig-
ure 3.7(b) demonstrates an instance of marked image pixels. The intensity of a pixel 𝑃𝑖 is
found by interpolating 𝑇𝑠𝑃𝑖 in the reference voxel data. This interpolation is denoted by the
operator 𝑔(⋅) in Fig. 3.8. For an example of using the nearest-neighbour interpolation (NNI), if
we assume that round(⋅) function gives the nearest discrete reference-grid location to a point,
then 𝐼0(round(𝑇𝑠𝑃𝑖)) is the intensity of the pixel sought.

The transformations for all the intersected elements are computed while the set L is com-
piled. Subsequently, for every edge crossing of the scan-line, a current transformation pointer
can be switched to point to the transformation matrix of the current enclosing element. Our
proposed algorithm for the synthesis of one image frame can be summarized as follows:

1. Compile the set 𝐿 of intersected elements and their partial-ordering relations.
2. Sort 𝐿 topologically.
3. Mark the cross-sections of 𝐿 on the image in the sorted order.
4. Compute the transformation 𝑇𝑠 for each element 𝑒𝑠 ∈ 𝐿
5. For each image pixel 𝑃𝑖

5a. If 𝑃𝑖 is marked with element 𝑒𝑠,
then set the active transformation 𝑇 to 𝑇𝑠

5b. Find the intensity of 𝑃𝑖 by interpolating 𝐼0 at 𝑇𝑃𝑖

3.3.6 Computational Analysis

In the algorithm above, the loop in step 5 processes every image pixel, while the previous
steps are used to compile the intermediate data structures to accelerate this step. Consider
an 𝑛-pixel image intersecting a total of 𝑚 elements in a 3D mesh and recall that 𝑛 ≫ 𝑚 for
typical medical images and FEM tessellations. Note that the synthesis of an image requires
some form of processing of each of its pixels, thus the computation of any synthesis algorithm
has a lower bound of Ω(𝑛). Nevertheless, the individual computational cost for every pixel
may render an algorithm infeasible as demonstrated in Section 3.3.2. Indeed, a method that is
sub-optimal for our application may demand over 30 s just to locate pixels in mesh elements.
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The computational analysis of the methods and the data structures introduced in this chapter
are presented below.

Compilation of the intersected element set 𝐿 starts from an arbitrary initial intersected
element, such as one touching the probe. Finding this initial element, which can be done
simply by traversing the top surface of the mesh, takes insignificant time. Once one intersected
element is found, the traversal of the rest using a pre-compiled neighbourhood list in step 1
takes constant time per element. Computing each transformation in step 4 is also a constant
time operation per element. Topological sort takes linear time with respect to the total number
of cross-sections and partial relations. Nonetheless, in our case the relations are set by the
shared edges between the 𝑚 cross-sections and thus the number of such edges is bounded from
above by a multiple of 𝑚. As a result, all the steps 1, 2, and 4 compute in 𝒪(𝑚) time.

The computation of step 3, where the pixels on cross-sections are marked, depends on
various implementation choices, such as the specific line drawing algorithm. Nevertheless, it
can be approximated by the number of pixels actually marked on the image. This can in turn
be regarded as approximately

√
𝑚 rows of elements being marked by Bresenham’s algorithm

on their upper halves. Considering a row of elements has on the order of
√

𝑛 pixels to be
marked, step 3 thus requires 𝒪(√𝑛𝑚) time to compute.

Note that the significantly lower computational order of steps 1-to-4 justify the anticipated
speed gain during step 5. In particular, step 5a of identifying the enclosing element reduces
down to a single memory access and, in step 5b, the transformation of pixels by 𝑇𝑠 from
discrete 2D image coordinates to the 3D reconstructed volume requires only 12 multiplications
per pixel.

3.3.7 Deformation Model

The deformation model employed in our particular implementation is a linear-strain quasi-
static finite-element model. For this, first a mesh representation of the region of interest is
obtained. Using the Young’s modulus and Poisson’s ratios of the materials involved, a stiffness
matrix K relating the nodal displacements 𝑢 of this mesh to the nodal forces 𝑓 is compiled
such that 𝑓 = K𝑢 [36]. Fundamental boundary constraints (the fixed nodes of the mesh)
are next applied on this K by zeroing its corresponding rows/columns. K is then inverted
and saved for use in the online simulation, where the probe surface is applied as displacement
constraints on the nodes that are in contact with it so that the displacements 𝑢 of all nodes are
calculated at each iteration. Modeling such contacts and achieving conforming meshes with
contact surfaces is an active field of research with various approaches having been proposed for
different deformation models (e.g., local mesh refinement [36], multi-resolution meshes [37],
condensation [3], force coupling [6]). In our experiments, it was assumed that the contact
locations were known a priori so that the mesh was generated ensuring that nodes do exist on
those interfaces.

3.4 Results

For our experiments, a 60×90×90mm tissue-mimicking gelatin phantom, having a soft cylin-
drical inclusion of 25mm in diameter, was constructed. The phantom was meshed using the
GiD meshing software [38] yielding 493 nodes and 1921 tetrahedra. The elasticity parameters
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Figure 3.9: (a) The phantom design (in mm), (b) its mesh, and (c) the image acquisition setup.

for the FEM simulation were set to the approximate values known for the gelatin concentra-
tions used. This phantom was imaged using a SonixRP ultrasound machine from Ultrasonix
Medical Corp. with a linear probe mounted on a precision motion stage. Vertical parallel
slices with 1mm separation were acquired with care not to deform the phantom surface. The
dimensions and the mesh of our phantom and our imaging setup are seen in Fig. 3.9.

Images, that physically span an area of 37.5×70mm, were acquired at a resolution of
220×410 from the display pipeline of the ultrasound machine. This is a typical B-mode resolu-
tion that this ultrasound machine outputs to the screen for the given probe and default imaging
parameters. For our experiment, 75 images were collected at a 1mm interval while moving the
probe in its elevational axis. Accordingly, our reconstructed voxel volume is chosen to be the
collection of these parallel slices, which constitutes an average of 8750 voxels per element in
our particular phantom mesh.

Deformation was applied by indenting the phantom with the probe. It was simulated using
the FEM by fixing the bottom side of the phantom as a fundamental boundary constraint. The
probe indentation was applied as a displacement constraint to the mesh nodes coinciding with
the probe on the top surface. In the FEM, the Young’s moduli were set to 15 kPa and 5 kPa
for the background and the circular inclusion, respectively, and a Poisson’s ratio of 0.48 was
used for both. The ultrasound images were then synthesized using the techniques presented.
Some of the acquired and the simulated images are presented in Fig. 3.10.

The images of a simulated probe indentation were compared to the images during an
identical physical indentation experiment using their mutual information (MI) and sum of
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.10: Simulated (upper) and acquired (lower) images with 0, 5, and 10mm indentations
for probe tilted at (a-c) 0∘; (d-f) 15∘; (g-i) 30∘; and (j-l) 45∘.
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Figure 3.11: Normalized mutual information (a) and sum of squared differences (b) of the
images simulated and acquired at 1mm incremental probe indentations (the values at [0, 0],
which match perfectly, are not presented here to preserve the colour map).

squared differences (SSD). 11 images were both simulated and acquired in 1mm steps up to
a 10mm compression. The MI and SSD between each pair of simulated and acquired images
are presented in Fig. 3.11. In this chapter, to present these MI values as a ratio of an absolute
measure in our experiments, the values were normalized with the average MI of two images
acquired 1mm apart in the elevational direction. As seen in Fig. 3.11(a), the simulated images
and the acquired images for the same indentations have the highest MI and the lowest SSD,
as expected. This shows that the simulation can successfully synthesize an image closely
resembling a real one. For reference, in our phantom the average MI between an ultrasound
image and one that is shifted vertically by one-pixel is 117% of the average MI of two images
1mm apart (forming the normalization factor) and it is 67% between two acquired images with
1mm probe indentation, when normalized as defined above.

The method can generate slices of given 220×410 resolution using the nearest-neighbour
interpolation (NNI) in less than 13ms on a 1.87GHz Pentium computer. Using tri-linear inter-
polation (TLI), the simulation of a B-mode frame on the same computer takes approximately
25ms. In order to evaluate the effect of the number of image pixels 𝑛 and the number of
intersected elements 𝑚 on the computational speed, the frame synthesis time for the NNI was
measured using different image parameters. As presented by the computational analysis, a
linear dependency on 𝑛 and a negligible effect of 𝑚 were expected. First, the image resolution
was decreased at 10% decrements of the original resolution while keeping the physical span of
the image frame, and then the physical image span was decreased at 10% decrements of the
original span while keeping the number of pixels the same. Note that, effectively, the former
alters 𝑛 for a constant 𝑚 and the latter alters 𝑚 for a constant 𝑛. Consequently, the former
decreases the pixel density per element, i.e., the number of pixels falling into each element
cross-section whereas the latter increases it. As presented in Fig. 3.12, the number of pixels
𝑛 was observed to determine the speed in the 𝒪(𝑛) manner as expected, whereas the number
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Figure 3.12: Change of frame synthesis time when varying (+) the number of pixels 𝑛 and (x)
the number of intersected elements 𝑚 expressed in percentages of the full-size phantom images
presented.

of intersected elements 𝑚 exhibited little effect on speed. Note that the slope of this linear
dependency on 𝑛 is defined by the hidden cost of processing each pixel (step 5). Our approach
of introducing additional steps and data structures in order to reduce this hidden cost to a few
multiplications is the key to accelerating such a method.

The technique above has been implemented for interactive ultrasound visualization with
simulated deformation as seen in Fig. 3.13. In this system, a SensAble PhantomTM Premium
device mimicking the probe is manipulated by the user while a visual interface displays the
tissue mesh and the probe in 3D. At the same time, the ultrasound images are also synthesized
by our algorithm and displayed at real-time visual rates (over 40Hz even when additional
computation time for FEM simulation and haptic feedback are added on top of the 13ms/frame
image synthesis time). A simple feedback force normal to the nominal tissue surface and
dependent on the current indentation depth was applied to user’s hand. The probe indentation
was modeled as displacement constraints on the closest surface tissue nodes and the mesh
deformation was computed using a pre-computed inverse stiffness matrix.

For an in-vivo assessment of this simulation method, B-mode images of the thigh of a
volunteer were also simulated. The 3D volume was reconstructed from B-mode images acquired
by the same SonixRP ultrasound machine. The spatial positions of these images were recorded
using a magnetic position sensor, Ascension MiniBIRD, attached to a linear ultrasound probe
so that a free-hand scan can be conducted. The anterior upper thigh of a volunteer was then
scanned as seen in Fig. 3.14(a) to a depth of 45mm by translating the probe orthogonal to its
imaging plane similarly to the phantom experiment. The spatial arrangement of the collected
images can be seen in Fig. 3.14(b). The volume represented by these images is then resampled
on a regular grid of 0.1mm spacing using the Stradwin software [26].

Considering the thigh tissue locally, the femur is the fixed displacement boundary condition,
that plays a major role in the way the thigh deforms. The femur anterior surface was segmented
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Figure 3.13: Real-time ultrasound scanning simulator.

from a deeper ultrasound scan of the same thigh region. An FEM mesh of 3805 elements and
997 nodes was generated using the GiD software and displacement boundary conditions were
defined by spatially fixing the nodes on the femur surface. For the purpose of this thesis, all
soft tissue was given a fixed Young’s modulus of 15 kPa and a Poisson’s ratio was set to 0.48
in this in-vivo example. Ultrasound images of two different probe orientations were simulated
using tri-linear interpolation. Simulated images at different indentation depths are seen in
Fig 3.15, where the anterior thigh anatomy is observed to deform under probe pressure.

3.5 Discussion

In the literature, there have been in-plane image deformation strategies for image registra-
tion, deformation correction for volume reconstruction [10, 25], and a training simulation for
DVT [18,23]. However, these 2D approaches cannot simulate out-of-plane deformations. Even
if the deformation is driven by motion only in the imaged plane, the boundary conditions may
couple image plane motion with motion orthogonal to the imaged plane, and such methods
simply cannot account for motion orthogonal to the imaging plane. Indeed, consider the case
of brachytherapy, where the prostate is imaged with the transversal crystal of the endo-rectal
probe while the needle may push the prostate through the imaging plane (see Fig. 3.1(c)). For
such deformation induced orthogonally to the imaging plane, 2D approaches simply do not
apply and our method becomes essential.

Our choice of phantom geometry aims at presenting out-of-plane deformation. During the
indentation experiments with the probe tilted, not only do the phantom structures compress,
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Figure 3.14: (a) The setup for in-vivo data collection and (b) the spatial arrangement of the
collected ultrasound images.

but also the image plane moves through the volume in its elevational axis.
Our simulation method is not limited to linear imaging geometry, but can also accommo-

date other probe geometries such as sector probes. Indeed, regardless of the transducer crystal
geometry, the conventional format for displaying, processing, and storing B-mode images is
Cartesian-based in compliance with the common screen hardware and image processing al-
gorithms. Consequently, our method simulates the pixels on a regular-grid regardless of the
original data acquisition format, similarly to other interpolation-based implementations in the
literature. The simulation of a sector image, for instance, can be accommodated in the current
technique by simulating all pixels internal to the bounding box of the non-rectangular image
footprint and then masking off the pixels lying outside the actual sector image region.

Locating the points of a 3D grid was studied in [39] to resample a 3D mesh to use in the
finite difference method for simulating seismic wave propagation. However, note that we are
interested in a 2D plane that intersects the mesh in arbitrary orientation. Furthermore, our
case involves deformed meshes and registering an image plane manifold between different mesh
configurations.

A deformation simulator must have two components: one that predicts how tissue deforms
based on a physically valid model and one that can display the result at a high enough frame
rate to match the simulation context, i.e., be “real-time”. Considering the former, many
medical simulations employ the FEM to produce the mesh deformation in response to tissue
forces or changes in the tissue constraints. Coupled with this FEM simulation, the user of a
medical simulator should be able to examine the simulated tissue in a manner that is accurate
and real-time. The techniques presented in this chapter serve to this latter need.
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(a) (b) (c) (d) (e) (f)

Figure 3.15: Simulated ultrasound images of the thigh with 0, 2, and 5mm indentations (shown
with arrows) for probe tilted at (a-c) 0∘ and (d-f) 30∘.

It is important to realize that our presented method is independent of the FEM simulation
and does not introduce any additional approximations and errors beyond those intrinsic to
the FEM simulation, i.e., there is no trade-off between image synthesis acceleration and image
quality. The image synthesis method uses the same mesh and the same interpolation functions
as the FEM simulation, and the re-sampling is performed over a grid of the same resolution
as the original medical image data while keeping the highest possible image resolution given
the reference image data set. Considering the B-mode image synthesis in particular, the
only assumption employed is the isotropy for the ultrasound interaction model. In addition,
note that the method introduced for image pixel location gives an exact solution, not an
approximation. Such a method is superior to the previous techniques in locating regularly-
spaced points at the expense of a small additional storage and its initialization time.

Our method aims at the development of a real-time realistic image synthesis technique,
which can be integrated with training systems that involve tissue deformation. In this context,
the simulated images were found to be adequate for medical simulators by physicians following
a preliminary visual inspection. This will be assessed further by expert sonographers in specific
clinical procedures, such as prostate brachytherapy, in the future. An extension of the quan-
titative evaluation method presented for the phantom images to the collected in-vivo leg scan
is not trivial. In phantoms, the boundary constraints and material properties can be adjusted
precisely, so that an assessment evaluates strictly the image simulation performance and does
not involve any errors associated with the identification of such parameters. Although these
parameters can be approximated at some level for actual anatomy, it is difficult to produce
exact FEM models and therefore to decouple the effects of the deformable model from the
image simulation method in in-vivo data.

As explained in Section 3.3.6 and justified by the results in Fig. 3.12, the frame synthesis
time of our simulation depends mainly on the number of pixels, but is also affected by the
number of elements intersecting the image to a small degree. Nevertheless, note that it is
independent both from the entire physical span of the FEM mesh and from the total number
of nodes/elements in it. It is indeed further independent from the entire physical span of the
reconstructed image data set, assuming it fits in the computer memory. Consequently, much
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larger tissue representations can be handled successfully. Also note that the extent of the
reference image volume does not have to match the extent of the FEM mesh. For instance,
in our experiment the bottom part of the phantom was not imaged for the reference volume
due to the depth setting of the probe and hence the black regions appear at the bottom of
the simulated images when indentation is applied. However, the deformation simulation was
considering the entire phantom volume for an accurate simulation.

Observing the relatively small effect of the number of intersected elements on synthesis
time in Fig. 3.12, it is seen that more elements on the plane will not be detrimental to the
simulation. Consequently, techniques such as local mesh refinement will not impede the speed,
since 𝑛 ≫ 𝑚 is still valid. Indeed, one can analyze the data on such a figure to estimate
maximum image resolution for a given mesh simulated on a particular machine.

In general, 3D ultrasound reconstruction involves resampling the acquired images in order
to generate volume data on a grid-structure. In our phantom image collection, ultrasound slices
were parallel and relatively dense creating a regular grid, therefore no further processing was
needed for reconstruction. For the in-vivo data, the Stradwin software was used to resample
the data in a grid structure. In this thesis, the nearest-neighbour and tri-linear interpolations
were employed in the image synthesis step. Other interpolation schemes are also applicable
depending on the computational limitations for achieving a required frame-rate in a particular
implementation.

Note that, for significantly large deformations, the acquired and the simulated images
may not match exactly using the linear-strain approximation due to rotationally-variant linear
elements. Nevertheless, there exist numerical treatments in the literature to achieve rotational
invariance [40]. Non-linear elasticity with dynamic models has also been proposed in the
literature [4]. All these models provide mesh node displacements at given time instants, which
can be used by our technique to synthesize images as in the given implementation. Moreover,
even other deformation models that provide node displacements, such as finite differences or
spring networks, can be used since the barycentric transformation proposed does not assume,
nor is bound to, any property of the FEM.

We assume that linear interpolation is used within the FEM mesh, therefore 4-node tetra-
hedra were employed in our simulation. The interpolation accuracy is maintained by reducing
the size of the mesh elements as necessary. The presented techniques still apply to deforma-
tions computed by higher-geometry elements, such as 10-node tetrahedra, by using only the
corner nodes for image synthesis. Considering element geometries other than tetrahedra, e.g.
hexagons, or meshes with mixed elements used for FEM deformation, note that the image plane
cross-sections of such convex polyhedra are also convex. Thus, these cross-sections can still
be found and marked using the techniques presented. However, an alternative undeforming
transformation will be needed instead of using the barycentric coordinates.

Our phantom has the same cross-section longitudinally, therefore two 1mm-apart images
look (and should look) the same to the human eye. Although their speckle pattern may differ,
for an observer they both carry the same information about the location, size, and other
features of the inclusion. The MI of this minimal and practically in-differentiable speckle
pattern change is taken as the base for normalization.

Note that, once the image is marked, the processing of each and every scan-line is inde-
pendent of another. This allows for completely disjoint synthesis of each scan-line, which is
a significant advantage for parallel processing of the computationally intensive step 5. For
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instance, on the emerging multi-core CPU architectures, scan-lines can be distributed among
CPU cores. Moreover, the simple computation scheme of step 5 is highly aligned with the
SIMD (single instruction, multiple data) execution model for parallelization on recent GPU
computation/programming technologies, such as CUDA [41].

The approach presented in this chapter is an enabling technique for many medical simu-
lations and in particular for any ultrasound simulator that will allow for tissue deformation.
Fast image simulation is also essential for certain deformable registration techniques, where
image slices of a deformed volume are compared to a set of reference images while the defor-
mation constraints are being optimized iteratively. Studying accelerated image synthesis is of
significant value especially in such registration schemes, where the generation of sliced images
through mesh-based deformations is one of the computationally intensive steps. Faster syn-
thesis is also crucial for the processing of high resolution images. A faster algorithm allows for
the generation of possibly more than one slice at a time instant (such as to render the volume
in 3D) and also facilitates the presentation of more than one modality to a trainee during
a training simulation (such as additional deformed MR and/or CT to better understand the
anatomy scanned).

This thesis treats the problem of image simulation with deformation using an interpolative
approach due to real-time processing limitations and parametrization difficulties of generative
models. An ultrasound image is indeed a product of very complex wave interactions in the
tissue. In an interpolative approach, instead of attempting to model this complex wave be-
haviour, image features (and similarly artifacts) are reproduced and placed in simulated images
at the 3D location where they were originally acquired. Similarly, our technique assumes that
the B-mode image of a deformed tissue region is similar to the properly deformed version of a
B-mode image taken prior to deformation. However, the visibility of an actual image feature
(e.g. a sharp tissue interface) or an artifact in B-mode imaging may depend on the direction of
the incidence of the ultrasound beam, whereas the visibility, with an interpolative approach,
depends on the direction of the original data collection regardless of the simulation-time probe
orientation. Therefore, interpolative B-mode techniques may not be optimal or applicable for
certain tasks. Nevertheless, they are still of great value in the medical field and are employed in
various B-mode applications such as volume reslicing in commercial 3D ultrasound machines.
Our approach equips the user with a fast and powerful tool for a range of applications from
training simulators to fast deformable registration, after carefully considering the interpolative
nature of the simulation method and its related limitations for that particular application.
Note that, as opposed to ultrasound, for other imaging modalities such as MR, the assumption
above may be satisfied.

Our method can be extended for applications and anatomy in which artifacts are prominent
by acquiring multiple reconstructions of the same volume where the images are collected at
various probe incidence angles. Subsequently, for each frame simulation, the reconstructed
volume acquired by the closest probe orientation to the simulated probe will be used. This
will effectively maximize the likeness and direction of artifacts in simulation. Note that such a
modification introduces additional memory storage cost due to multiple reconstructed volumes;
nevertheless, it does not increase the overall computational complexity of the approach.
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3.6 Conclusions and Future Work

In this chapter, a technique for synthesizing planar images in deformed meshes of tissue models
was presented. The method uses 3D image data of pre-deformed tissue. A pixel enumeration
technique originating from common scan-line algorithms was adopted to enable fast identifi-
cation of mesh elements enclosing each image pixel during deformations given by mesh node
displacements. This allows the generation of medical images of considerable size at frame rates
that are suitable for real-time applications. This technique was implemented to simulate B-
mode images of a deformable phantom and anterior thigh of a volunteer. Synthesized images
of probe indentations were then compared to the corresponding images acquired by physically
deforming the phantom. A real-time ultrasound simulator implemented on a haptic device
was also demonstrated. The results show that the proposed method produces realistic-looking
B-mode images. The methods presented are easily adaptable to other imaging modalities and
deformation models.
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Chapter 4

Modeling and Simulation of Flexible
Needles 5

4.1 Introduction

Percutaneous insertion of long and flexible needles into soft tissue is involved in many clin-
ical and therapeutic procedures such as biopsy and prostate brachytherapy. As a result of
needle-tissue interaction, the needle base movements and, for needles with a beveled tip, the
asymmetric cutting force on the tip, the tissue deforms and the needle bends (see Fig. 4.1).
The targeting procedure is complicated by the bending of the needle shaft, target displacement
due to tissue deformation, and insufficient visual feedback from medical imaging modalities.
Accurate needle insertion requires significant skill and training of the performing physician.
Modeling, simulation, and path planning of needle insertion are emerging fields of research
aimed at providing the physicians with training devices and accurate pre-surgery plans.

Needle insertion simulators usually include a soft tissue model, a flexible needle model and
a needle-tissue interaction model. The simulation of needle bending and tissue deformation
together in one combined model is generally not feasible for two reasons: (𝑖) a fast solution
for a large tissue mesh requires exploiting simplifications in deformation equations, which are
not suitable for estimating the needle behavior and (𝑖𝑖) the interaction surface of the needle
and tissue changes during insertion, which many techniques like the Finite Element Method
(FEM) cannot inherently accommodate. Therefore, generally two separate models for the
tissue and the needle are employed [1–4] with a third needle-tissue contact model governing
their interaction.

Deformable tissue models have been studied extensively in simulating tissue deformation
during surgery and needle insertion [1–5]. Models based on the FEM are the most common
techniques employed for tissue deformation simulation during needle insertion [1,2,4,6]. Mass-
spring models [7] have also been used for this purpose. The interaction of needles with such
deformable tissue models has also been studied widely [2, 5, 8, 9].

The aim of this chapter, the preliminary results of which were presented in [10], is to
compare different models for simulating the bending of flexible needles. In general, medical
needles can be categorized into three major groups: rigid needles, highly flexible needles,
and (moderately) flexible needles. Rigid needles keep a straight posture regardless of the
forces applied on them during insertion. Due to their simplicity, rigid needle models have
been used when the needle physical properties and the insertion procedure lead to negligible
bending [1, 2, 6]. On the opposite end of the flexibility range are the highly flexible needles.

5A version of this chapter has been published. O.Goksel, E.Dehghan, and S.E. Salcudean, “Model-
ing and Simulation of Flexible Needles,” Medical Engineering and Physics, 31(9):1069-1078, Nov 2009.
DOI:10.1016/j.medengphy.2009.07.007
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Figure 4.1: The forces on the needle shaft caused by tissue deformation and needle base
manipulation.

These needles are assumed to bend in the direction of their tip bevel with a constant curvature,
without applying considerable force to the tissue in the lateral direction. These needles were
modeled as a non-holonomic system [3] and were used for needle insertion simulations and
planning in [11–13].

Some needles, such as brachytherapy needles, cannot be categorized as either rigid or highly
flexible. They are not rigid, since their deflection during procedures is significant. They are
not highly flexible either, since a considerable lateral force is necessary to bend them. Several
groups have modeled this type of needles. DiMaio and Salcudean simulated the needle as
an elastic material using FEM with geometric non-linearity and 3-node triangular elements
and validated this method in phantom studies [14]. This method was later extended to 3D
using 4-node tetrahedral elements [4]. Glozman and Shoham used linear 2D beam elements
to simulate the needle bending for needle steering [7]. Linear beam theory was also used to
introduce a needle steering model with online parameter estimator [15], to estimate the needle
tip deflection during insertion due to tip bevel [16], and to identify the shaft force profile
due to the bevel [17]. Models based on linear beam theory are relatively simple and fast.
However, they are not rotationally invariant and cannot preserve the needle length during
large deformations/deflections.

Many needles, such as brachytherapy needles, consist of a stylet sliding inside a hollow
cannula. Physical modeling of this combination without any simplifications is indeed very
complicated as it requires separate models for the stylet and the cannula and an interaction
model to simulate their interface. In this thesis, flexible needles are approximated as solid bars
and, accordingly, models applicable to solid bars are examined to simulate their flexion.

Three different models were used to simulate needle bending. The first two models are
based on the FEM and were chosen due to their frequent use in the literature, while the third
model is an angular springs model. The first model uses 4-node tetrahedral elements, where
nonlinear geometry is accommodated to simulate large deformations. The second model also
accommodates nonlinear geometry and uses Euler-Bernoulli nonlinear beam elements. In this
work, nonlinear beam elements were preferred over more common linear ones in the literature
due to their superiority in modeling large deformations. The third model is novel and utilizes
angular springs for the quasi-static simulation of needle bending. In the literature, angular
springs have been used to model cantilever-like structures [18] such as beams in mechanical
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engineering [19] and hair deformation in computer graphics [20]. They have been also incor-
porated in 3D mass-spring models to simulate large volume deformations [21]. In this thesis,
this type of a spring finite-difference model is implemented for medical needles, for which its
performance is compared with two other common types of physically-based models using FEM.

The Young’s modulus is the parameter that describes needle bending in the first two models.
Similarly, the third model is identified by its spring constant. The parameters defining each
model are identified for a brachytherapy needle through experiments, where several lateral
forces were applied to the needle tip and the shaft deflection was recorded. The models were
then studied for their accuracy in simulating the actual needle deflection observed during
experiments.

In this thesis, the needle bending models are devised in 3D. Note that, for the single
force applied at the needle tip during the experiments, the needle deformation is entirely
planar. Therefore, the parameter identification and the model validations were performed in
2D. Nevertheless, the same identified parameters also describe a needle in 3D, since the shafts
of most medical needles are built with axial symmetry resulting in symmetric deflection for
the same force rotated around their long axis.

The following section derives the models in 3D. Next, the experimental method to validate
the models is described in Section 4.3. The results and a discussion follow in sections 4.4 and
4.5, respectively. Finally, conclusions are presented in the last section.

4.2 Methods

4.2.1 Finite Element Method using Tetrahedral Elements

The Finite Element method is a powerful tool for approximating a solution to the continuum
mechanics equations. In this method, an entire body Ω is divided into several discrete elements
Ω𝑒. Then, the constitutive equations are approximated over each element and combined to give
an approximation to the global solution. Various types of elements can be chosen depending on
the nature of the problem. 4-node tetrahedral (TET4) or 3-node triangular (TRI3) elements
are the simplest elements to use in 3D or 2D deformation analysis, respectively.

Considering a deformable body, the 3D coordinates of a point in the undeformed configu-
ration can be written as [𝑥1 𝑥2 𝑥3] in the reference frame. The coordinates of that point in the
deformed configuration can then be expressed using the displacements [𝑢1 𝑢2 𝑢3] added onto the
undeformed coordinates. Using this definition, the Green strain and the second Piola-Kirchhoff
stress tensors are given as follows:

𝜖𝑖𝑗 =
1

2

(
∂𝑢𝑖

∂𝑥𝑗
+

∂𝑢𝑗

∂𝑥𝑖
+

3∑
𝑘=1

∂𝑢𝑘

∂𝑥𝑖

∂𝑢𝑘

∂𝑥𝑗

)
, (4.1)

𝜎𝑖𝑗 =
3∑

𝑘=1

3∑
𝑙=1

C𝑖𝑗𝑘𝑙 𝜖𝑘𝑙 , (4.2)

where 𝑖, 𝑗 ∈ {1, 2, 3} and C𝑖𝑗𝑘𝑙 is the material moduli tensor for linear elastic materials which
is a function of Young’s modulus and Poisson’s ratio.

When the deformation is small, the second order terms in (4.1) can be neglected leading
to a linear relation between strain and displacement. This linear relation leads to a set of
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linear algebraic equations with a constant coefficient matrix. Such a system can be solved
rapidly using off-line computation and condensation [2,22]. However, the assumption of small
deformation is not valid for needle bending, where the deformation is large with respect to
the needle diameter [14]. Thus, nonlinear geometry as in (4.1) must be included in the model.
This leads to a nonlinear relation between the nodal forces and displacements:

𝑓 = K̂(𝑢)𝑢 (4.3)

where 𝑢 and 𝑓 are the vectors of nodal displacements and forces, respectively, and K̂ is the
stiffness matrix, the elements of which can be represented as functions of nodal displacements 𝑢 .
This nonlinear equation can accommodate the axial displacements during lateral deformation
and, therefore, preserves the needle length. However, the use of condensation is not possible
in the nonlinear case and this leads to a time-consuming solution.

The Newton-Raphson method is an effective iterative technique for solving the nonlinear
algebraic equations in (4.3) [23]. In this method, a tangent stiffness matrix KT is computed at
each iteration and used to find a descent direction for the solution using the iteration scheme
below:

KTΔ𝑢𝑡 = 𝑓 − K̂(𝑢𝑡)𝑢𝑡 (4.4)

𝑢𝑡+1 = 𝑢𝑡 +Δ𝑢𝑡 (4.5)

to update the nodal displacements at each iteration 𝑡.
In our simulations, the Newton-Raphson method converged to a solution for (4.3) in a few

iterations. Unfortunately, computing the tangent stiffness matrix and solving (4.4) at each
iteration are both computationally intensive operations.

4.2.2 Finite Element Method using Nonlinear Beam Elements

Beam elements were designed and introduced in the FEM literature in order to model the
deformation of bars, rods, and other beam-like structures [24]. These elements are expected to
be better suited for needle deformations than triangular/tetrahedral elements. Thus, a beam-
element model was also implemented to compare its performance in modeling needles. Euler-
Bernoulli beam element is a common element formulation to model thin bars and therefore is
used as a needle model in this chapter.

Euler-Bernoulli beam theory suggests that each plane perpendicular to the beam axis prior
to any deformation remains as a plane that is still perpendicular to the beam axis after the
deformation. Under this condition the displacements of each material point can be written as
a function of the displacement along the neutral axis of the beam as follows:

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥)− 𝑦
∂𝑣0(𝑥)

∂𝑥
− 𝑧

∂𝑤0(𝑥)

∂𝑥
, (4.6)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥)− 𝑧𝛼0(𝑥) , (4.7)

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥) + 𝑦𝛼0(𝑥) , (4.8)

where 𝑢0, 𝑣0, and 𝑤0 are the neutral axis displacements along the 𝑥, 𝑦, and 𝑧 axes, respectively,
and 𝛼0 is the twist around the beam axis. It is assumed that the beam axis is lying along the 𝑥
axis as shown in Fig. 4.2. Please note that, in order to conform to the beam-element literature,
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Figure 4.2: Euler-Bernoulli beam element under deformation.

the node positions [𝑥1 𝑥2 𝑥3] and the node displacements [𝑢1 𝑢2 𝑢3] in the previous subsection
are referred here as [𝑥 𝑦 𝑧] and [𝑢 𝑣 𝑤], respectively.

Assuming that the beam twist is small while the lateral deformations are moderately large,
strains in the beam element can be approximated as [25]:

𝜖𝑥𝑥 ≈ 𝑑𝑢0

𝑑𝑥
− 𝑦

𝑑2𝑣0
𝑑𝑥2

− 𝑧
𝑑2𝑤0

𝑑𝑥2
+
1

2

((
𝑑𝑣0
𝑑𝑥

)2

+

(
𝑑𝑤0

𝑑𝑥

)2
)

, (4.9)

𝜖𝑥𝑦 ≈ −1
2
𝑧
𝑑𝛼0

𝑑𝑥
, (4.10)

𝜖𝑥𝑧 ≈ 1

2
𝑦
𝑑𝛼0

𝑑𝑥
. (4.11)

In the beam element, the displacements of the material nodes on the beam axis are interpo-
lated from the nodal variables of the two end-points (nodes) of the beam. The nodal variables
at node 𝑝 are the axial displacement 𝑢𝑝, the twist 𝛼𝑝, the transverse displacements 𝑣𝑝 and 𝑤𝑝

(along the 𝑦 and 𝑧 axes, respectively), and their derivatives 𝜙𝑝 = −𝑑𝑣/𝑑𝑥 and 𝜓𝑝 = −𝑑𝑤/𝑑𝑥.
Euler-Bernoulli beam theory employs cubic interpolation functions for lateral displacements,
and linear interpolation functions for axial displacements and twist angle. Therefore, within
each element between nodes 𝑝 and 𝑝+ 1, the variables are interpolated as follows:

𝑢0(𝑥) = 𝑁1(𝑥)𝑢𝑝 +𝑁2(𝑥)𝑢𝑝+1 (4.12)

𝛼0(𝑥) = 𝑁1(𝑥)𝛼𝑝 +𝑁2(𝑥)𝛼𝑝+1 (4.13)

𝑣0(𝑥) =𝑀1(𝑥)𝑣𝑝 +𝑀2(𝑥)𝜙𝑝 +𝑀3(𝑥)𝑣𝑝+1 +𝑀4(𝑥)𝜙𝑝+1 (4.14)

𝑤0(𝑥) =𝑀1(𝑥)𝑤𝑝 +𝑀2(𝑥)𝜓𝑝 +𝑀3(𝑥)𝑤𝑝+1 +𝑀4(𝑥)𝜓𝑝+1 (4.15)

where 𝑁𝑖(𝑥) and 𝑀𝑖(𝑥) denote the linear and cubic interpolation functions, respectively.
An element equilibrium equation relating loads on the nodes to the nodal variables is

written as:
K(𝑢)𝑢 = 𝑓, (4.16)

where 𝑢 is the vector of nodal variables described above and 𝑓 is the vector of corresponding
nodal forces and torques. Please see Appendix D for detailed information on the calculation
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Figure 4.3: Angles of bending and twisting between two needle segments.

of the stiffness matrix and its integration. To solve (4.16), Picard’s method [24] is used. This
method employs the following iterative steps:

K(𝑢𝑡)𝑢𝑡+1 = 𝑓 (4.17)

where 𝑡 is the iteration number.

4.2.3 Angular Springs Model

In this section, the needle is modeled as a discrete structure composed of 𝑛 connected rigid
rods. A joint 𝑃 between two consecutive segments of such a model is shown in Fig. 4.3, where
the segment 𝑃𝑃+ is bent and twisted relative to the segment before it, 𝑃−𝑃 , under external
loads. The magnitude of bending and twisting can be described by two angles: the bending
(zenith) angle 𝜃 from the 𝑥 axis to the segment 𝑃𝑃+, and the twisting angle 𝛼 about the
segment 𝑃𝑃+ due to torsion around its axis.

Naturally, a deformed (bent/twisted) needle structure applies internal reaction (“straight-
ening”) torques/forces to un-bend and un-twist itself. These are modelled as torques applied
to link 𝑃𝑃+ at joint 𝑃 to restore its rest configuration. The effect of these torques can be
visualized as two rotational springs —one un-bending and the other un-twisting the segment—
shown in Fig. 4.3. It is evident that the magnitudes of such restoring torques are functions of
the deviations (angles 𝜃 and 𝛼) from the rest configuration. Let us define the magnitudes of
these reaction torques, 𝜏𝑏 for bending and 𝜏𝑡 for twisting, as functions of the angles as follows:

𝜏𝑏 = ℎ𝑏(𝜃) , (4.18)

𝜏𝑡 = ℎ𝑡(𝛼) . (4.19)
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Figure 4.4: Three joints of our spherical wrist model in (a) initial and (b) bent configurations.

Although the actual characteristics of ℎ𝑏 and ℎ𝑡 may be complex and possibly nonlinear, for
the elastic range of deformations, a linear relationship is expected. Indeed, when an infinitesi-
mal section of a cantilever shaft is analyzed for its bending (in Appendix E) and its twisting (in
Appendix F), linear angle-torque dependencies are observed for both of them. These insights
motivate us to devise our model composed of linearly-acting springs as follows:

𝜏𝑏 = 𝑘𝑏 𝜃 , (4.20)

𝜏𝑡 = 𝑘𝑡 𝛼 . (4.21)

Then, the energy stored in these springs can be written as:

𝑉 (𝜃, 𝛼) =
1

2
𝑘𝑏𝜃

2 +
1

2
𝑘𝑡𝛼

2 . (4.22)

As a model of the connections between each pair of segments, a spherical wrist —the rest
configuration of which is shown in Fig. 4.4(a)— is chosen in this thesis. These three wrist
joints, seen in a bent/twisted configuration in Fig. 4.4(b), define the orientation of the segment
to its right with respect to the segment to its left. Note that, whereas the third joint 𝛼 defines
the twisting angle independently, the bending angle 𝜃 is a combination of the joint angles 𝛾
and 𝛽. It can be geometrically shown that:

cos 𝜃 = cos 𝛾 cos𝛽 . (4.23)

In order to derive compliance models for the joints 𝛾 and 𝛽, let us rewrite the energy as a
function of these joint variables, e.g. 𝑉 (𝛾, 𝛽, 𝛼). For sufficiently small angles, 𝜃 ≈ sin 𝜃. This
greatly simplifies the following derivation and the solution of final system of equations. Thus,
replacing 𝜃2 = sin2 𝜃 and (4.23) in (4.22):

𝑉 (𝜃, 𝛼) =
1

2
𝑘𝑏(1− cos2 𝜃) + 1

2
𝑘𝑡𝛼

2 , (4.24)

𝑉 (𝛾, 𝛽, 𝛼) =
1

2
𝑘𝑏(1− cos2 𝛾 cos2 𝛽) + 1

2
𝑘𝑡𝛼

2 . (4.25)
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Figure 4.5: The entire needle in equilibrium state constrained at the base and under nodal
forces at its joints.

Considering the invariance of the Langrangian at equilibrium, the partial derivatives of
joint angles are equal to joint torques, which are the gradients of the potential with respect to
the joint angle coordinates, as follows:

𝜏𝛾 =
∂𝑉

∂𝛾
= 𝑘𝑏 sin 𝛾 cos 𝛾 cos2 𝛽 , (4.26)

𝜏𝛽 =
∂𝑉

∂𝛽
= 𝑘𝑏 sin𝛽 cos𝛽 cos2 𝛾 , (4.27)

𝜏𝛼 =
∂𝑉

∂𝛼
= 𝑘𝑡𝛼 . (4.28)

The small angle approximation above also applies to 𝛾 and 𝛽, i.e. sin 𝛾 ≈ 𝛾, sin𝛽 ≈ 𝛽,
cos 𝛾 ≈ 1, and cos𝛽 ≈ 1, thus yielding:

𝜏𝛾 ≈ 𝑘𝑏𝛾 , (4.29)

𝜏𝛽 ≈ 𝑘𝑏𝛽 . (4.30)

Consider a 3D bent needle posture in equilibrium with force loads 𝑓
𝑖
applied at its joints

as in Fig. 4.5. Using our spherical wrist model, a Jacobian matrix 𝑱 can be written for this
3𝑛-joint robotic arm [26], where the joint torques 𝜏 = [𝜏 ′1 . . . 𝜏 ′𝑛]′ relate to forces 𝑓 as follows:

𝜏 = 𝑱 ′𝑓 . (4.31)

From (4.28–4.30), the 3𝑛 vector of joint torques 𝜏 can be written as a combination of 3𝑛
joint angles Φ = [𝛾1 𝛽1 𝛼1 . . . 𝛾𝑛 𝛽𝑛 𝛼𝑛 ]

′ and the corresponding joint stiffnesses as follows:

𝜏 =𝑲𝒔Φ (4.32)

where 𝑲𝒔 is a diagonal matrix with diagonal elements {𝑘𝑏,1 𝑘𝑏,1 𝑘𝑡,1 . . . 𝑘𝑏,𝑛 𝑘𝑏,𝑛 𝑘𝑡,𝑛} being the
joint stiffnesses .

Note that since the Jacobian 𝑱 is configuration dependent, (4.31) is indeed a nonlinear
system of equations as follows:

𝑲𝒔Φ = 𝑱 ′(Φ)𝑓 . (4.33)

In this thesis, this nonlinear system is solved iteratively using Picard’s method:

Φ𝑡+1 =𝑲𝒔
−1𝑱 ′(Φ𝑡)𝑓 (4.34)

which consists of two phases: (𝑖) given the needle configuration, the Jacobian is composed, and
(𝑖𝑖) the torques found by 𝑱 ′𝑓 are divided by corresponding joint stiffnesses to find the joint
angles and hence the needle posture at the next iteration.
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Figure 4.6: For a sample bending simulation, (a) shows the sum of joint angles 𝛾, which is
the deflection of the needle tip, and (b) shows the residual torque at each iteration.

4.2.4 A Common Convergence Criterion for All Models

In order to have a fair comparison between the three needle models, a common convergence
criterion was devised to be used in the simulations as follows:

𝐸𝑟𝑟𝑜𝑟 =
∥𝑢𝑡 − 𝑢𝑡−1∥

∥𝑢𝑡∥ < 𝜆 (4.35)

where 𝑢𝑡 is the vector of nodal displacements at the iteration 𝑡 and 𝜆 is the tolerance. In this
thesis, a tolerance of 10−4 is used.

When the convergence criterion in (4.35) is met, the residual of error for all the models
were checked to ensure convergence. For the proposed angular-springs model in (4.33), that
is the torque residual

∥∥𝑱 ′(Φ𝑡)𝑓 −𝑲𝒔Φ
𝑡
∥∥ . For all the simulations in this chapter, the ter-

minal residuals of the three models were sufficiently small indicating model convergence to
equilibrium.

Figure 4.6 shows the convergence during a sample planar deflection with a tip force applied
in −𝑦 direction. The sum of angles 𝛾 is plotted in Fig. 4.6(a). Note that for this planar bending,
this sum is equal to the deflection angle of the needle tip with respect to the needle base frame
lying along 𝑥 axis. The torque residual during this simulation is also plotted in Fig. 4.6(b).

4.3 Experiment

In order to show the feasibility of the models and compare their accuracy, the following exper-
iments were conducted using an 18 gauge 20 cm Bard R⃝BrachyStar R⃝needle (C.R.Bard, Inc. ,
Covington, GA), that is used in prostate brachytherapy seed-implant procedures. In these ex-
periments, the needle was bent under several known forces and its bent shaft form is recorded
for evaluating our model simulations.
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Figure 4.7: The needle shaft as it is clamped at its base and a vertical force is applied at its
tip.

During the experiments, the needle was clamped at its base while its shaft lay horizontal to
the ground. Due to the clamping mechanism, the effective bending shaft-length of the needle
was reduced to 18.7 cm. Subsequently, several vertical forces were applied to its tip using
combinations of scaling weights. The weights were placed on a stage hanging on a tiny hook
bent at the tip in order to achieve a perpendicular force to the needle base at all times. The
stage setup for hanging weighs 1.3 g and the weights applied were 5, 10, 15, 20, 25, 30, and
40 g.

For each force applied, the needle was imaged as in Fig. 4.7 over a white background using
a digital camera, the shutter of which was controlled via computer. Ordinary brachytherapy
needles are marked with black stripes at every 1 cm. These markers were located on each
image to determine the bent configuration of the needle. Needle-tip lateral deflections from
the nominal axis, measured using this procedure, are shown in Table 4.1.

Table 4.1: Tip deflection for various lateral tip forces.
Force [mN] 63 113 163 213 263 313 413

Deflection [mm] 8.3 14.5 20.9 27.0 33.0 39.0 50.2

To minimize the effect of lens warping on the data, the needle was centered close to the
image center and a far camera focal distance was used. By imaging straight lines, this effect
was found to be negligible in the given setup. In a calibration step using a ruler, the image
resolution on the needle plane was measured to be better than 9 pixels/mm.

The observations of shaft bending in these experiments were next used to (𝑖) identify the
model parameters for the given brachytherapy needle, and (𝑖𝑖) evaluate the accuracy of each
model by comparing the simulated bent needles to the experimental data.

4.4 Results

In the experiments, the needle deformations were all planar. Therefore, the model equations
were reduced to their 2D equivalents. The equations for a 2D nonlinear beam element are
obtained by simply removing the rows and columns of the stiffness matrix in (4.16) that
correspond to 𝑣, 𝜙 and 𝛼 in the vector of nodal variables (reducing K to its parts K11, K13,
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Area Error

Tip Error

Figure 4.8: The definitions of the tip error and the area error between the simulated model
and the observed needle postures.

K31, and K33 in Appendix D). The angular spring model can be used in 2D simply by
neglecting the torsion. The FEM with tetrahedral elements reduces to triangular elements in
2D. A 2D plane-stress analysis was then performed by also taking the out-of-plane thickness of
the elements into account. The Poisson’s ratio was taken to be 0.3, which is the Poisson’s ratio
of steel. Therefore, the model parameters to be identified are the Young’s modulus 𝐸 in the two
FEM-based models and the bending spring constant 𝑘𝑏 in the angular spring model. Equal-
length segments were chosen so that the needle bending is described by a single parameter in
each model.

4.4.1 Parameter Identification

For parameter identification, two independent goals were specified: (𝑖) a best fit to the experi-
mental tip position, and (𝑖𝑖) a best fit of the entire needle shaft. Accordingly, two cost functions
relating an actual bending to a simulated one were defined as seen in Fig. 4.8: (𝑖) a lateral
tip position error, that is, the vertical difference between the simulated and the measured tip
position, and (𝑖𝑖) the area lying between the simulated and the observed needle shafts. These
goals, namely the tip fit and the area fit, were formulated as two separate optimization prob-
lems. Subsequently, the model parameters were found for each of them, independently, using
the Nelder-Mead simplex search method [27].

In the first phase the model parameters were identified for different numbers of elements
using each pair of force-displacement data. The effect of the number of elements on the
identified parameters and the accuracy of the simulation were studied using models with 10 and
20 segments. In the triangular FEM model, meshes with 11×2 and 21×2 nodes were employed
corresponding to 10 and 20 segments, respectively. The 11×2 triangular mesh employed is
seen in Fig. 4.9, where the shaft thickness was set to that of a brachytherapy needle.

Figure 4.10 shows the range of the identified Young’s moduli and the identified angular
spring constants over the range of applied forces for different numbers of segments. In this fig-
ure, the identified parameters for both optimization goals are presented as box-plots displaying
the distribution of parameters for varying tip loads.

Figure 4.10(a) presents the identified bending spring constants for 10, 20, and 50 segments.
Similarly, Figure 4.10(b) presents the identified Young’s moduli for 10 and 20 triangular ele-
ments. As seen in the plots, Young’s modulus for triangular elements and spring constants for
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base

a segment 1.28 mm

186.7 mm

tip

Figure 4.9: Needle discretized by triangular elements on a 11×2 mesh.

angular springs are highly dependent on the number of segments. This is due to the nature
of these models where adding segments increases the shaft flexibility since the deflections of
each segment add up. As opposed to these two models above, the beam model is not sensitive
to the number of segments. Consequently, the Young’s moduli identified for both 10 and 20
segments are the same and therefore they are presented using a single plot in Fig. 4.10(c).

Note that, for a given number of segments and optimization goal (e.g., the tip fit), the
variation of the identified parameters with the changing force is relatively small in all three
models. This slight variation is observed to be mainly due to experimental errors such as the
resolution of the imaging system and the localization of the black stripes on the shaft.

4.4.2 Performance in Modeling Needle Deflection

During a needle insertion simulation, the forces are not known a priori. Thus, the goal of
a needle deformation model is to successfully predict needle deflections for a wide range of
possible loads using only a single set of fixed parameters. In this chapter, we use a single
identified parameter for each model. These parameters, identified in the previous section, vary
slightly with the applied force. Consequently, the effect of using a single fixed parameter for all
applied loads is studied next. In total, six parameters have been identified for three different
models with 10 and 20 segments each.

As seen in Fig. 4.10, the parameters identified using the tip fit and the area fit are close,
thus either of these error measures could be used to determine a fixed parameter for each
model. The mean of the parameter values identified using the tip fit method was chosen as
the fixed parameter in simulating each model for evaluation.

Each fixed parameter was then used to simulate the needle deflection for all the seven
different tip loads and these simulated deflections were compared with the experimental results.
Figure 4.11 shows these simulated deflections for the three models with 20 segments along
with the experimentally observed needle configurations. The tip and area errors for 10 and 20
segments using fixed parameters are presented in Fig. 4.12.

4.5 Discussion

Thanks to the fast computation of the presented models, and in particular, the angular springs
model, they can easily be integrated into real-time medical training simulations systems. Due
to their high accuracy, they can also be used in simulations for needle steering and path
planning.

Computationally, the beam element model is more efficient than the triangular/tetrahedral
element model. Note that a beam element and a triangular element both have 6× 6 stiffness
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Figure 4.10: Distribution of identified Young’s moduli and spring constants by minimizing
tip and area errors for each bending experiment using a different load. Boxes extend from
the lower quartile to the upper quartile value with the median marked. Whiskers show the
full extent of data for models (a) 10/20/50 segment spring, (b) 10/20 segment triangular, and
(c) 10/20 segment beam (having equal values). The extents of values are also shown in separate
figures for each model to facilitate comparing them within full range of values.
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(a) The triangular element model with a 21× 2 mesh.
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(b) The nonlinear beam model with 20 elements.
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(c) The angular springs model with 20 segments.

Figure 4.11: The experimental deformed needle posture (circles) and the simulated needle
(thicker solid lines) using the mean value of identified parameters.
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Figure 4.12: The tip (a) and area (b) error comparison of the three models (dotted-lines for
the triangular FEM, dashed-lines for the beam FEM, and solid-lines for the spring model)
simulated using the mean value of identified parameters with 10 and 20 segments (marked
with circles and crosses, respectively).

matrices in 2D and, similarly in 3D, a tetrahedral element and a 3D beam element both have
12×12 stiffness matrices. However, modeling a needle using triangles/tetrahedra requires more
elements than the beam element approach. For instance, if the needle is modeled in 2D using
a mesh of 2𝑛 nodes (resulting in 𝑛− 1 segments), the tangent stiffness matrix will be 4𝑛× 4𝑛.
In contrast, an equivalent beam model with 𝑛 − 1 elements will result in a 3𝑛 × 3𝑛 stiffness
matrix.

Extension to 3D escalates this computational discrepancy, since a significantly larger num-
ber of elements are required for tetrahedral FEM to model the same number of segments in
3D, whereas the beam model and, similarly, the angular springs model use the same number of
nodes and elements both in 2D and 3D. Furthermore, achieving an accurate and symmetric 3D
model requires many tetrahedral elements [4], whereas the beam and angular springs models
are inherently symmetric. Also note that, assuming the needle twist to be negligible facilitates
the beam-element and the angular-springs models since the dimensions of the beam-element
stiffness matrix can be reduced as shown in Appendix D and, in the angular springs case,
skipping the computations involving the twist angle accelerates the convergence of the system
in (4.33) by decreasing the number of unknowns. However, the tetrahedral model does not
benefit from this simplification.

In our simulations, the beam-element and the angular-springs models often converged in
fewer iterations than the triangular element model. Not only is the angular springs model
robust requiring at most 6 iterations in our simulations, but its each iteration is also com-
puted very fast since it consists of forward vector-algebraic equations with few trigonometric
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functions, that can be implemented using look-up tables, if necessary. Indeed, during a cou-
pled tissue-needle simulation, the forces on the needle change smoothly. Therefore, an initial
needle-posture guess from the previous time instant is often close to its final solution and thus
generally only a single iteration is required to find the new equilibrium state.

There are alternative methods to Picard’s method that was used to solve (4.34) for the
angular springs model. In particular, a physically-based method based on potential energy
could be developed using (4.25) as a starting model. The equilibrium configuration of the
system would satisfy (4.33), with guaranteed convergence.

The identified Young’s modulus did not change with the number of elements in the beam
element model. Therefore, the beam element model can be used in an adaptive deformation
simulation scheme. In this scheme, the simulation starts with a minimum number of elements
and, as the needle perforates the tissue and interacts with more tissue, the number of elements
is increased (as done in [7]).

Note that the given angular springs model can be simplified to neglect the twist along the
shaft by ignoring/zeroing the angles 𝛼𝑖. This is a valid assumption for many needles since
the twist is often negligible due to the high shear modulus of the needle shaft and/or small
twisting torques acting on it.

The angular springs model as presented deals with force loads only. Nevertheless, torque
loads can easily be integrated in the formulation by extending the Jacobian definition in (4.31)
as follows:

𝜏 = 𝑱 ′
[

𝑓

𝑔

]
(4.36)

where 𝑱 𝑖 is now a 6×3𝑛 Jacobian matrix and 𝑔 is the vector of torque loads at joints.
Although in our formulation of the angular springs model the force loads were considered

only at nodes/joints, in practice, forces at any location on the model can be accommodated,
since their corresponding moment arms can be calculated regardless of them being applied at
a joint or not.

In our experiments, a single tip force was applied on the needle. However, soft tissue
applies a distribution of force along the needle shaft during a needle insertion. In order to
employ the presented discrete models, these forces need to be integrated on the discrete needle
node locations first. Such integration is common in the FEM literature. Then, these multiple
discretized forces can be applied on the discrete needle model. Both FEM models and angular
springs are known to perform stably with multiple loads applied [20,23]. Overall, the coupled
needle-tissue system is solved in an iterative scheme, which therefore takes the insertion history
into account. Such a coupled system was presented in [4].

The experiments were conducted with the needle stylet inside the needle cannula. During
brachytherapy procedures, there are often at most 5-6 seeds loaded in each needle at 1 cm
intervals. Consequently, the stylet, which is inserted in the cannula up to the last loaded seed,
covers at least 14-15 cm of the 20 cm cannula. Therefore, in our simulator presented later in
Chapter 5, the identified angular spring parameter with the stylet is used for the entire needle.
Alternatively, the model parameters can be identified through experiments for a needle with
and without the stylet. Subsequently, for a simulation where the stylet is partially inside the
cannula, the corresponding parameter can be used for the sections of the needle with and
without stylet.

In this thesis, equal length segments were used in the angular springs model that led to
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Figure 4.13: (a) Mean angular spring constants identified using 10, 20, 30, 40, and 50 segments
and (b) a log-log plot of mean spring constants as a function of segment length (dashed-line is
a line fitted to the first and the last values).

equal spring constants for all the joints. It should be noted that both bending and twisting
spring constants of a segment are defined for a specific segment length and they are both
inversely proportional to this length as formulated in appendices E and F. This relation
between segment length and the bending spring constant was further studied (Section 4.5.1)
to devise a spring-constant approximation scheme for any given length. It was confirmed that
the bending spring constant is inversely proportional to the segment length.

4.5.1 Approximating the angular spring constants

It is not always possible to determine the best segment length to use in a needle simulation
at the time the bending model is developed. For a specific simulation, a finer or coarser
model than the one for which parameters were initially identified may be required. For each
segment length, running simulations to identify individual parameters may not be feasible.
Furthermore, segment lengths may need to be adjusted online during a simulation. Therefore,
identifying a relation between the segment length and the spring parameter is beneficial. For
this, the angular springs model, being the most accurate in modeling needle bending and the
fastest to simulate, is studied next.

The angular spring constants identified using 10, 20, 30, 40, and 50 segments are plotted in
Fig. 4.13(a). In this figure, only the mean value of constants identified through different loading
experiments are shown since the other values lie within 1% range as also observed in Fig. 4.10(c-
e) for the case of 10, 20, and 50, respectively. It is seen that the mean identified spring
constant has a linear relation with the number of segments, which is inversely proportional
to the segment length. This relation between the spring constant and the segment length is
indeed expected from (E.3).

The change of this mean spring constant with segment length is presented in Fig. 4.13(b)
in a log-log scale. Recall that the effective bending needle shaft is 186.7mm. As seen in this
figure, the angular spring parameter for a given segment length can be interpolated easily from
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the known values. For instance, if the parameters for 20, 30, or 40 segments are identified using
a line fit (dashed line in Fig. 4.13(b)) to the values of 10 and 50 segments, the interpolated
values fall within 2.5% of the spring parameters that were actually identified through individual
simulations.

4.6 Conclusions

Three different models were presented to simulate the deformations of a needle. The first two
models use tetrahedral and beam elements, while the third model uses rigid bars connected
through angular springs. All the models can preserve the needle length during moderately
large deformations. The efficacy of the models in simulations of needle bending was evaluated
through experiments during which several lateral forces were applied to a brachytherapy needle
and the resulting deformations were recorded. The model parameters —Young’s modulus for
the FEM-based models and spring constants for the angular springs model— were identified to
fit each model to these experimental data. The lateral tip error and the area error were inde-
pendently minimized to find the parameters defining each model. Later, one single parameter
value was extracted for each model and the needle deformations simulated using these values
were compared to the experimental deformations. A scheme for interpolating spring constants
from values identified through simulations is also presented.

The angular springs model demonstrated the highest accuracy compared to the other two
models. Furthermore, this method is computationally the most efficient and it is the simplest
to implement. It was shown that the Young’s modulus in the tetrahedral/triangular model
is significantly dependent on the number of elements. However, the same parameter is inde-
pendent of the segment length in the beam element. This property can be used in adaptive
simulation to increase the speed.

The models are capable of simulating the needle twist. However, twist is often negligible
in medical procedures and it is not validated through our experimental setup.
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Chapter 5

Haptic Simulator for Prostate
Brachytherapy with Simulated
Ultrasound 6

5.1 Introduction

Low-dose-rate brachytherapy is the permanent implantation of radioactive seeds in tissue and
it is the treatment of choice for early-stage locally-confined prostate cancer. In brachytherapy,
the seeds are delivered using long, flexible needles inserted through a template grid according to
a pre-plan as seen in Fig. 5.1(a). Similar to most minimally-invasive procedures, brachytherapy
lacks direct visual feedback and thus the seeds are implanted under medical image guidance. A
transrectal ultrasound (TRUS) probe mounted on a translation stage is used by the physician
to image the anatomy and the needles. Figure 5.1(b) shows a photography of the probe and
the stage. During the procedure, a knob on the side of this stage is used to translate it to
image the anatomy at different depths. A sample ultrasound image from the procedure can be
seen in Fig. 5.1(c).

Due to the lack of direct visual feedback, the performing physician has to rely on the
TRUS images and the kinesthetic feedback on the needle in order to assess the needle path
(and hence the positions of the seeds to be implanted) with the respect to the current anatomy.
The prostate, the pathology, the seeds, and the needle are not always clearly visible in TRUS
images. Furthermore, the procedure must be completed in a relatively short period of time to
minimize edema and anesthesia side-effects.

Errors in seed placement resulting in an undesired dose distribution at the target volume
decrease the effectiveness of the treatment and may lead to complications such as incontinence
and impotence [1]. Furthermore, errors caused by prostate deformation and motion due to
needle insertion may necessitate needle re-insertions, which in turn increase the procedure time
and the risk of complications, also causing significant edema. For developing these required
skills, the conventional training of a medical resident involves observing expert physicians
perform the procedure and using mannequins, animals, or cadavers to practice, which either do
not offer very realistic experiences or may involve ethical issues. In this chapter, an alternative
method of training via a computational brachytherapy simulator system is proposed to aid
medical residents in gaining hands-on experience on various aspects of this procedure, such as
the relation of ultrasound images and the anatomy, and the effects of tissue deformation. Such

6A version of this chapter has been peer-reviewed and accepted for publication in the proceedings of the 2010
International Symposium in Biomedical Imaging (ISBMS). O.Goksel and S.E. Salcudean, “Haptic Simulator for
Prostate Brachytherapy with Simulated Ultrasound”. A version of this chapter will also be submitted for
publication.
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Figure 5.1: (a) The brachytherapy procedure setup, (b) a picture of the probe and its stage,
(c) and an intra-operative ultrasound image.

simulation of this procedure is also important in accurate planning of the seed locations, where
the anticipated (a priori simulated) tissue deformation of needle insertions can be compensated
for in the planning.

During needle insertion in the operating room, physicians have to rely on TRUS images
along with haptic feedback on the needle. Therefore, a training or rehearsal simulator re-
quires realistic rendering of both images and haptics, while also simulating tissue deformation.
Furthermore, for a rehearsal or planning application, an accurate patient-specific model is es-
sential since the tissue mesh and surrounding boundary constraints play a significant role on
the outcome of the procedure [2].

The simulation presented in this chapter runs on a computer system and mimics the images
and the deformation of tissue in response to the needle being inserted. The user holds and
moves a physical (haptic) device in order to insert/retract the needle, while kinesthetic feedback
computed in the simulation is applied on the user’s hand by the haptic device. At the same
time, simulated TRUS images are presented to the user on the screen.

This chapter addresses the integration of the following components of the proposed simu-
lator: a needle model, a tissue model with deformation, needle-tissue interaction, image simu-
lation, haptic feedback, and generation of patient models. The flexible needle model presented
in Chapter 4 is employed here. The tissue deformation and needle interaction were adopted
from our earlier work [3]. The image simulation method is adapted from Chapter 3 with the
addition of needle appearance simulation proposed in [4]. Haptic feedback and a patient model
generation framework are introduced in this chapter, while also addressing the real-time system
integration and user interface aspects. The application of the variational meshing technique in
Chapter 2 is also discussed and illustrated for prostate model generation in this chapter.

Ultrasound is a real-time, cost-effective, non-ionizing, and hence widely-used medical imag-
ing technique. For simulation of this real-time modality, several generative methods have been
proposed. However, even the most sophisticated generative methods do not capture the realism
and complexity of actual B-mode images. Chapter 3 presents a method of employing actual
B-mode volumes to synthesize deformation-coupled images using an interpolative scheme in
the mesh [5]. This method, which was also validated through phantom studies, is adopted and
integrated into the brachytherapy simulation in this chapter.

Several studies on modeling tool interaction with deformable tissue exist in the literature.
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See [6] for a review. A subcategory of these methods motivated by training, especially la-
paroscopic procedure simulators, target graphical rendering of simulated camera images as
visual feedback. However, for brachytherapy, a real-time simulation of TRUS images within
deformed tissue volume is required, where our method becomes essential. Brachytherapy has
received significant attention from the research community targeting tissue deformation and
needle interaction simulations [3,7]. However, haptic and ultrasound feedback, which are both
essential in a training setup, have not been provided in any previous work.

5.2 Methods

5.2.1 Brachytherapy Simulation Components

The components described below are illustrated in Fig. 5.2. At the heart of the simulation lies
the needle-tissue interaction model, which runs in a separate thread at high-priority. Tissue
deformation is modeled using linear-strain FEM and is coupled to the needle shaft using a stick-
slip friction model [3, 8, 9]. In this approach, the needle shaft poses a displacement constraint
for the tissue nodes laterally so that these nodes can slide along the shaft, but cannot leave
it. Friction forces that are typically caused on the needle shaft surface during such sliding
are also applied on these tissue nodes [8]. These displacement and force constraints are then
solved using a condensed version of the tissue stiffness matrix computed using FEM [10]. As
the needle advances in the tissue, this coupled needle-tissue model is updated quasi-statically
and new tissue nodes are added on the needle shaft, if required [3]. More details on this 3D
needle-tissue interaction model can be found in [9] and [3].

A low-level haptic process running at 1KHz reads the haptic device position to control the
needle base location and provides force feedback computed in the simulation to the user’s hand.
This process also handles other low-level control tasks such as creating a lateral constraint
on the needle to simulate the brachytherapy template grid through which the needles pass
during the actual procedure. In this thesis, a low cost haptic device solution, Novint Falcon,
was used to control the needle base location. This device allows for position input and force
feedback in three translational axes within a workspace of 10x10x10 cm3 and provides a software
development platform in Windows.

The flexibility of brachytherapy needles is modeled similarly to the bending of a cylindrical
rod. This model is discretized as a set of linear rod segments connected via torsional springs.
These springs force the segments to align, which was shown to model shaft flexibility accurately
in Chapter 4 [11]. As a result of the constraints that the needle imposes on tissue as described
above, the tissue generates reaction forces (computed using the FEM). Subsequently, at a
simulation time instant, using the needle posture and the forces exerted on the needle shaft,
first the torques at each segment joint and then the corresponding spring deviations (hence a
new needle posture) are found, therefore yielding a new bent needle posture at the end of the
simulation iteration.

For imaging feedback, the interpolative ultrasound simulation technique described in Chap-
ter 3 was used to display real-time B-mode TRUS images to the user [5]. These images are
simulated using pre-operative voxel volume data that is deformed to match the location of the
nodes computed by the FEM. The same tissue mesh used in needle interaction model above
is used for the image deformation simulation as well. Consequently, at each image simulation
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Figure 5.2: The online simulation components and their data interaction.

iteration, pixels of an image plane emanating from the TRUS probe into the deformed mesh
are simulated. As described in Chapter 3, the plane intersection with the deformed mesh is
marked on the pixels to find encapsulating mesh elements and, once the pixel locations are
transformed to the nominal mesh frame, their intensities are interpolated using tri-linear inter-
polation. This image simulation task is run in a lower-priority thread at visual refresh rates.
In this thesis, the translation of the virtual TRUS probe is controlled using the keyboard.

B-mode needle appearance is also synthesized using the needle-image simulation method
of [4] on the presented ultrasound images. This technique employs a large set of needle images
collected a priori in water. At simulation time, for a given relative arrangement of the probe
with respect to a needle, the closest set of such a priori images are determined. Subsequently,
an ultrasound needle appearance is interpolated using a combination of nearest-neighbour and
tri-linear techniques in a tensor interpolation scheme. This simulated needle image is then
overlaid/blended with the simulated ultrasound images at the location and orientation that it
should appear in the image. The current image dataset includes needle tip and shaft images for
transversal TRUS ultrasound probe at several depths and orientations, and can be extended
to the B-mode simulation of brahytherapy seeds in the future [4].

For the overlay of needle images on the ultrasound images, the addition of pixel intensities
was proposed in [4]. Although B-mode formation is indeed a result of very complex ultrasound
interactions, such an intensity blending method was further shown to perform satisfactorily.
Prior to blending, the needle images also need to be rotated and positioned over the location
where they should appear [4]. In this thesis, the hardware acceleration of the graphics card is
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utilized for this task using OpenGL. At every display iteration, the simulated needle image is
texture-mapped on a surface, which is then positioned over the desired region of the simulated
B-mode image. The transparency of the needle texture is then used to obtain a desired blending
effect, such as intensity addition. This approach achieves a very fast rotation and blending on
the graphics hardware.

The proposed brachytherapy simulator displays a 3D view of the anatomical structures
as well. In this display, the anatomical surfaces are rendered during the simulation so that
their displacement in 3D can be observed relative to the needle and the TRUS probe. In
medical training, the comprehension and association of observed ultrasound images within a
3D anatomical volume is one of the challenges frequently mentioned by radiation oncologists
practicing the procedure. This 3D view aims to facilitate the learning of the 3D anatomical
layout with respect to the TRUS probe and the needle. In certain other training scenarios
such as evaluating a trainee, this view can simply be disabled using the interface.

5.2.2 Patient Model Generation

Each patient model is generated using two sets of imaging data: (𝑖) pre-operative TRUS
images and (𝑖𝑖) pre- or post-operative MRI of the prostate region. The TRUS images are
used to reconstruct a 3D B-mode voxel volume for the on-the-fly ultrasound simulation. The
MR volume is used to generate a mesh representation of the relevant anatomy. These two
modalities are registered using the prostate surface. An outline of the model generation steps
described above is seen in Fig. 5.3.

For 3D mesh generation for a given anatomy, anatomical surfaces extracted from contours
segmented on image slices are used in a Delaunay-based meshing strategy, as described below
in this section. The feasibility of using the energy-based meshing technique from Chapter 2
is studied later in Section 5.4.1 . The use of prostate vibro-elastography imaging in this latter
approach will be the ultimate modeling strategy for the brachytherapy simulator. However,
the patient data used in this work, which contains TRUS B-mode voxel volume scans, does not
include volumetric elastography images. Therefore, the MRI volumes and their segmentations,
which were readily available to us from these same patients, are primarily employed in this
chapter. In these MRI volumes, the pelvic bone and the tissue near the skin, which are typically
not covered by a TRUS scan, are also seen in detail.

95



Chapter 5. Prostate Brachytherapy Simulation

(a) (b) (c)

Figure 5.4: (a) A segmented MR slice, (b) the fine surface meshes generated from segmented
contours, and (c) coarser surface models after farthest point sampling.

First, the prostate, the pelvic bone, and the bladder are segmented in MR images as seen
in Fig. 5.4(a) using the Stradwin software, where the anatomy surfaces seen in Fig. 5.4(b) are
interpolated from these cross-sections [12]. The tissue inside and around these surfaces are then
meshed using the TetGen volume meshing tool [13]. Since most meshing applications taking
explicit surface representation do not modify the given surface vertices, depending on the
desired mesh resolution, these anatomical surface models are resampled at a lower resolution
using fast-marching geodesic farthest-point sampling [14] prior to meshing. This reduced model
as seen in Fig. 5.4(c) also accelerates the meshing process.

5.2.3 Mesh-Ultrasound Registration

Next, the prostate is segmented on TRUS images. Accordingly, the mesh generated above and
seen in figures 5.5(a)–(b) is registered rigidly to the TRUS image volume using the prostate
surface models from both imaging modalities. A variation of iterative closest point (ICP)
method is used to match the point clouds of the prostate models. The registered surfaces are
seen in Fig. 5.5(c). For the FEM deformation simulation, the pelvic bone is assumed as a fixed
boundary constraint in the offline computation of an inverse stiffness matrix. This matrix
and other required mesh vertex/connectivity information are saved a priori to be employed
in real-time by the needle-interaction model. The ultrasound simulation also expects certain
mesh-related data structures in order to accelerate its online processing [5]. Also, the needle-
image simulation necessitates a set of needle images acquired a priori [4]. These are also
prepared in advance and saved for online use.

5.2.4 Pre-computation of Data Structures

Certain data structures of the proposed system do not change during a simulation and/or their
initial values require lengthy computations. Such parameters are computed in an offline step
and saved to be later used in real-time simulation. For instance, the mesh faces corresponding
to anatomical surfaces in the 3D anatomical view are identified prior to the simulation. This
allows for adjusting the parameters of the stick-slip interaction model on such surfaces to
simulate different tissue characteristics, such as an increased tip-cutting threshold simulating
the prostate capsule, that is typically harder to penetrate than the surrounding tissue. Such
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(a) (b) (c)

Figure 5.5: (a)-(b) The volume mesh generated from segmentation of MRI and (c) the rigidly
registered prostate surface models from MRI and TRUS.

friction and cutting parameters of the interaction model are currently set using empirical values.
A tissue stiffness matrix that is to be used in FEM is also computed offline from the mesh.
Young’s modulus and Poisson’s ratio of different tissue layers are assigned from approximate
values in the tissue biomechanics literature.

5.3 Results

Haptic interaction is currently implemented using a Novint Falcon device, that has three
degrees-of-freedom for both position control and force feedback. Simulating the template
grid that constraints the lateral motion of the needle, the device is fixed in those two axes
using a PID controller once the insertion point on skin is selected in the ultrasound interface.
Subsequently, the device controls the needle base in the insertion axis and provides feedback
in the same axis during the simulation. In practice, the needle bending is relevant only beyond
the template grid. This can be simulated by simply neglecting/zeroing the bending angles of
the deformable needle model segments at and before the template location.

The corresponding components of the system run at real-time haptic and visual rates.
Refresh rates of the needle interaction and ultrasound simulations can be set in the interface
at run-time with typical values being 250Hz and 10Hz, respectively. The ultrasound image
pixels that are mapped back from the immediate deformed mesh to the nominal time-zero mesh
at each iteration are interpolated using tri-linear interpolation in that nominal image dataset.
The image simulation takes a large portion of the processing time, therefore the interface
including this ultrasound view is isolated in a separate thread running at a lower priority than
the insertion model. For the simulation scenarios in which remeshing [3] is desired during
haptic control, a pre-insertion is performed in the background once the insertion template
location is chosen. This ensures that the nodes are created/moved on the needle path and a
subsequent insertion with haptic feedback does not require any time-steps possibly exceeding
this rate. The graphical interface to this simulation is seen in Fig. 5.6.

This simulation can also be used as part of a treatment planning system. For a given
needle-base trajectory, which is read from a file or is commanded in the interface, the simu-
lation performs the insertion and finds the resulting needle configuration in the tissue. This
is presented in Fig. 5.7 to simulate a conventional brachytherapy needle insertion, where the
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Figure 5.6: The graphical interface to the simulation displaying the anatomical surface models
on the left and the simulated ultrasound window on the right.

needle tip is targeted at the circled 3D pre-plan seed location. In conventional brachytherapy,
tissue deformation is not taken into account. Therefore, when the needle tip arrives at this 3D
position in the nominal frame as shown in Fig. 5.7(a), the target is considered reached and a
seed is implanted in the tissue. This seed shown with plus coincides with the nominal targeted
location (circle) in this deformed configuration. However, it is actually subject to a change of
position, once the needle is retracted and the tissue returns to its nominal configuration. The
mismatch between the seed and its original target is seen in Fig. 5.7(c).

5.4 Discussion

5.4.1 Variational Meshing

This section demonstrates the use of the variational meshing approach presented earlier in
Chapter 2 for the model generation for the brachytherapy simulator. This method will allow
a user-input-free generation of patient-specific prostate models. These can be generated intra-
operatively, enabling on-the-fly treatment planning/correction. The meshing technique from
segmented surfaces in Section 5.2.2 requires user input and significant segmentation time,
therefore is not applicable in such a scenario. Furthermore, it does not offer a guaranteed way
of limiting the maximum number of vertices in the mesh. This vertex budget is enforced by
the FEM simulation speed and assures the completion of a simulation in a reasonable time on
a particular hardware. In our variational meshing approach, such a vertex budget can be given
as an input, while a trade-off between capturing intensity changes or achieving higher-quality
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(a) (b) (c)

Figure 5.7: Simulation of the seed placement error due to tissue deformation. The circle
denotes the pre-plan target, whereas the plus sign marks the actual implanted seed location
(a) at the time of insertion, (b) during needle retraction, and (c) after the needle leaves the
tissue.

elements can be set.
At the time of this simulator development, the patient data having other image modalities

required by our simulation does not include volumetric elastography images. Therefore, our
variational meshing method is demonstrated in this brachytherapy simulation context by em-
ploying a labeled volume as an intermediate image representation, similarly to various other
medical meshing studies in the literature [15–18]. This labeled volume is a regular grid of
voxels, where each voxel is assigned a value for being inside/outside a segmented anatomy. In
our case, the surfaces segmented from MRI as described in Section 5.2.2 are voxelized for this
purpose, similarly to the examples of [18].

The labeled volume is then fed to the image-based variational meshing approach, which
replaces the tessellation step (“Mesh”) in the model generation diagram in Fig. 5.3. The
resulting tessellation is seen in Fig. 5.8. In this figure, only the elements forming the prostate
and the pelvic bone are shown using the element thresholding method described in Chapter 2.
The isosurface of the labeled volume is also overlaid in these figures to show the agreement
between the mesh and the image. This mesh can next be registered to TRUS similarly to the
result of the TetGen meshing method above.

The meshing approach described in Section 5.2.2 has been chronologically developed first
and used accordingly in our simulator prototype. Note that prostate vibro-elastography is
work that was carried out in parallel to that in this thesis. Fine-tuning the parameters of that
system to obtain reliable tissue elasticity is still in progress. Once such elastography images are
available to us, the introduced variational meshing method will be applied without a labeled
intermediate volume, as done in Chapter 2.

5.4.2 Brachytherapy Simulation

The needle targeting example presented above shows the capability of the system for predicting
a seed implant location. The ultrasound images of such seeds can also be simulated and blended
with images similarly to the needle image simulation. Furthermore, these predicted implant
locations can be used in a needle path planning system using iterative optimization techniques
as presented by [19].
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(a)

(b) (c)

Figure 5.8: Variational meshing result of the prostate labeled volume with the labeled volume
isosurface overlaid. A good agreement between the labeled volume boundary and our mesh is
apparent from the isosurface closely following our thresholded mesh surface.

In the preliminary testing of the training system, the ultrasound simulation for brachyther-
apy with deformation was found to be very realistic-looking. The accuracy of this approach
was already studied in phantoms in Chapter 3. Furthermore, the needle image simulation work
of Zhu [4], that was incorporated in this brachytherapy simulation, generated realistic needle
images in ultrasound. These findings were confirmed by a brachytherapy expert testing the
system. Sample images of the system during the insertion of a needle can be seen in Fig. 5.9.

5.4.3 Deformation due to TRUS Probe

In the current simulation, the interaction between the probe and the tissue is not modeled.
Indeed, the probe is moved minimally in transversal axis during needle insertions and any
probe-tissue friction during the axial translation of the probe can be neglected considering
the lubrication of the probe encapsulating balloon. Nonetheless, it is possible to model the
probe-tissue interaction both in lateral and axial axes also using a stick-slip model similar to
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Sample images from the simulation of a brachytherapy needle insertion. The needle
is kept rigid and the TRUS position (imaging depth) is not changed between these images. The
ultrasound image is observed to change, reflecting the deformation of the tissue, also showing
the needle when it intersects the imaging plane, during the insertion (a)-(d) and the retraction
(e)-(f) of the needle. The ultrasound simulation and its realism are better appreciated with
the animated images during the simulation, since the speckle pattern can then be observed to
change during needle motion.
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needle-tissue interaction.
The pre-operative MR and the intra-operative TRUS volumes are currently registered

rigidly. This makes the assumption that the deformation of the prostate during the vol-
ume registration at the beginning of the brachytherapy procedure is minimal. In the future,
these models and consequently the corresponding TRUS voxel volume can be registered using
well-known deformable registration techniques. Either intensity-based techniques or surface-
based methods, given that the pelvic bone is also (partially) segmented in TRUS images, can
be followed. Note that, for an FEM-based registration approach, the mesh generated using
elastography readily provides a good deformable model having its elements assigned with their
relative elasticity values. Alternatively, the deformable model can be generated from the TRUS
imaging, such as using elastography techniques, eliminating the need for registration.

5.4.4 Parameter Tuning and Validation

There exist methods in the literature for finding both the biomechanical properties of the
prostate region [20] and the parameters of needle interaction [21,22]. Acquiring such simulation
parameters non-invasively is still a challenging research problem. Swelling of the prostate was
not incorporated in our simulation, but it may be modeled with the addition of a pressure
component on the prostate model increasing with time or the number of needles inserted.

The presented ultrasound simulation technique is also of value for evaluating the accuracy
of deformation simulation by comparing deformed ultrasound images to the ones collected
intra-operatively with the needle inserted. Validation of the simulation is to be addressed in
future work. Such simulated ultrasound images in comparison with actual intra-operative ones
can further be used for optimizing tissue deformation and/or needle insertion parameters.

5.5 Conclusions

In this chapter, a novel needle insertion simulation with simulated ultrasound feedback is
presented for the prostate brachytherapy procedure. This is the first real-time deformable tissue
interaction model in the literature that also provides coupled realistic deformable ultrasound
feedback. The visual realism of the simulated ultrasound is ensured intrinsically by the use of
actual TRUS images as input. The needle in the developed simulation is controlled using one
of various methods including a haptic device, allowing for utilization in training, rehearsal, or
planning applications. A patient-specific model generation procedure for this simulation is also
presented in this chapter. Parameter identification and the validation of the presented system
will be studied next.
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[14] G. Peyré and L. D. Cohen, Advances in Computational Vision and Medical Image Pro-
cessing: Methods and Applications. Springer, 2008, ch. Geodesic Methods for Shape and
Surface Processing, pp. 29–56.

[15] A. Mohamed and C. Davatzikos, “Finite element mesh generation and remeshing from
segmented medical images,” in IEEE International Symposium on Biomedical Imaging
(ISBI): Nano to Macro, 2004, pp. 420–423.

[16] N. Archip, R. Rohling, V. Dessenne, P. Erard, and L. P. Nolte, “Anatomical structure
modeling from medical images,” Computer Methods and Programs in Biomedicine, vol. 82,
no. 3, pp. 203–215, 2006.

[17] J.-P. Pons, F. Ségonne, J.-D. Boissonnat, L. Rineau, M. Yvinec, and R. Keriven, “High-
quality consistent meshing of multi-label datasets,” in Information Processing in Medical
Imaging (IPMI), 2007, pp. 198–210.

[18] J. Dardenne, S. Valette, N. Siauve, N. Burais, and R. Prost, “Variational tetrahedral mesh
generation from discrete volume data,” The Visual Computer: International Journal of
Computer Graphics, vol. 25, pp. 401–410, 2009.

[19] E. Dehghan and S. E. Salcudean, “Needle insertion parameter optimization for brachy-
therapy,” IEEE Transactions on Robotics, vol. 25, no. 2, pp. 303–315, 2009.

[20] S. Salcudean, D. French, S. Bachmann, R. Zahiri-Azar, X. Wen, and W. Morris, “Vis-
coelasticity modeling of the prostate region using vibro-elastography,” in Medical Image
Computing and Computer-Assisted Intervention (MICCAI), 2006, pp. 389–396.

[21] J. Hing, A. Brooks, and J. Desai, “Reality-based estimation of needle and soft-tissue
interaction for accurate haptic feedback in prostate brachytherapy simulation,” Robotics
Research, STAR 28, vol. 28, pp. 34–48, 2007, sTAR 28.

[22] A. Okamura, C. Simone, and M. O’Leary, “Force modeling for needle insertion into soft
tissue,” IEEE Transactions on Biomedical Engineering, vol. 51, pp. 1707–1716, 2004.

104



Chapter 6

Conclusions and
Future Research

In chapters 2, 3 and 4, novel algorithms were proposed contributing to different aspects of
medical simulations. These proposed methodologies were tested on simulated data, tissue-
mimicking phantoms, and/or actual patient imaging data. In Chapter 5 a simulation frame-
work for prostate brachytherapy was presented. At this point, the feasibility of a training
simulation for needle-insertion as was proposed in Chapter 1 is demonstrated. In this chapter,
the materials in the previous chapters are analyzed in light of current research in the field and
the contributions are delineated. The future work and directions are discussed at the end.

6.1 Contributions

6.1.1 Modeling Needle Flexibility

Elastic rods have been studied in various contexts in the literature such as hair modeling in
computer graphics [1] and modeling catheters and guidewires for medical procedures [2]. Based
on the Kirchhoff theory of elastic rods [3], a sophisticated dynamic elastic model for various
types of discrete rods for computer graphics applications was recently presented in [4]. In
Chapter 4 of this thesis, we present a novel use of a discrete elastic rod for needle bending.
Using this method, bending and twisting of medical needles are modeled as a collection of rod
segments connected by angular-springs. An iterative solution scheme to determine the needle
posture for given forces is also presented.

The efficacy of the model was evaluated through experiments, where the bending of an
actual prostate brachytherapy needle was observed for several different lateral tip forces. As
a benchmark for our approach, it was compared with two common FEM models for the same
needle. For the evaluation of the methods, two error measures were proposed to define a
good fit of a model to experimental data. These errors were minimized to identify the model
parameters, which are Young’s modulus for the FEM-based models and spring constant for
the angular springs model. The needle deformations simulated using the identified parameters
were then compared to the experimental deformations for different experiments.

The angular springs model, which is computationally the most efficient and is the simplest
to implement, also demonstrated the highest accuracy in modeling actual needle flexibility
compared to the other two models. The models are capable of simulating the needle twist.
The twist is often negligible for standard needles in medical procedures such as brachytherapy
and it was not validated through our experimental setup. However, recent work introduces
the use of highly-flexible (also called steerable needles) for improved steer-ability in targeted
needle insertion applications [5, 6]. These needles are steered using their tip bevel, the angle
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of which is controlled by twisting the needle base. In order to model this controlled steering
for such very flexible needles, a model of needle shaft torsion around its axis is essential.

6.1.2 Rapid Image Slicing Complying Model-Based Deformations

In Chapter 3, a technique for synthesizing planar images in deformed meshes of tissue models
was introduced. The method uses the 3D image data of the anatomical region of interest. A
pixel enumeration technique was developed for the well-known point location problem to enable
fast identification of mesh elements enclosing each image pixel during deformations given by
mesh node displacements. This leads to the generation of medical images of considerable size
at frame rates that are suitable for real-time applications.

This technique was implemented to simulate B-mode images of a tissue-mimicking phantom
and the anterior thigh in-vivo. Synthesized phantom images of known probe indentations were
also used to evaluate the method by comparing these with corresponding images acquired
by physically deforming the phantom. They exhibit substantial similarity demonstrating the
feasibility of the method in simulating B-mode images. A real-time ultrasound simulator
implemented on a haptic device was also presented. Both qualitative and quantitative results
show that the proposed method produces realistic-looking B-mode images.

The methods presented are easily adaptable to other imaging modalities and deformation
models. Fast image simulation is essential for certain deformable registration techniques as
well. The presented pixel enumeration technique for element identification, which lies at the
heart of the rapid simulation method, is readily highly-parallelizable for implementations on
multi-core CPU and GPU architectures. Furthermore, the speed of the technique depends only
on the number of pixels in the simulated images, but not on the overall size of the FEM mesh
and/or the 3D reconstructed voxel volume. This computational advantage was presented on
an example in Chapter 3.

This method makes the assumption that the ultrasound images and artifacts will not change
significantly with deformation. This is not necessarily true in every clinical scenario, never-
theless can be safely employed in many applications such as training and deformable registra-
tion [7–10]. Considering applications and anatomy in which artifacts are prominent, multiple
reconstructions of the same volume can be employed where the images are collected at various
probe incidence angles. Subsequently, for each frame simulation, the reconstructed volume
acquired by the closest probe orientation to the simulated probe is used. This will effectively
maximize the likeness and direction of artifacts in simulation.

6.1.3 Optimal Tessellation of Images

In order to partition images into FEM elements in an optimal fashion, a novel energy definition
was proposed in Chapter 2 based on FEM interpolation and image-partitioning errors [11–13].
This combined error is minimized using a proposed optimization scheme producing high-quality
image-compliant FEM elements. The method was demonstrated in 2D and 3D on numerical
data, MR images of the brain, and CT images of the kidney. Such mesh models of the
anatomy are required by medical simulations and hence their generation is an active field of
research [14–18].

Such an optimized discretization represents an image using far fewer degrees-of-freedom
than the underlying image pixels/voxels. Therefore, it is possible to also extract an approxi-
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mate segmentation of the structures of interest from the meshes optimized using this method.
This was demonstrated with a simple segmentation technique selecting connected elements
from a thresholded subset of all tetrahedra.

Our proposed method does not require any a priori knowledge of the boundary constraints,
which are often fully defined only at the time of the online simulation but not during the
model generation. Local mesh element sizes thought the domain can also be adjusted using
the inherent formulation of the technique as was demonstrated on a numerical example. This
allows for having finer mesh resolution near certain anatomical features, if desired. A sliver
exudation method that is compatible with the proposed energy definition was also presented
in Chapter 2.

6.1.4 Deformation Models Using Elastography

With the emerging fields of elastography imaging and tissue parameter identification, the
optimal image partitioning method proposed in Chapter 2 becomes essential for generating
optimal deformation models from those identified parameters. In a deformation model based
on FEM, such mechanical features of the tissue are discretized as a constant in each mesh
element. The error due to this discretization is readily minimized using the presented method.
This technique was presented on an elastography image of the prostate, where the tissue elastic
modulus was approximated to be inversely-proportional to the imaged strain [19]. Indeed, this
and other mechanical parameters of a tissue region can be extracted using several methods
presented in the elastography literature [20–23].

6.1.5 Needle Insertion Simulation

Computerized simulation of needle insertion was studied in applications for medical train-
ing [18, 24], treatment-planning [25], and needle path planning/steering [5, 6]. Based on the
pioneering work of [26], the basic concepts of a 3D insertion simulation were developed in [24].
With the integration of the B-mode simulation techniques and the needle flexibility model
presented in Chapters 4 and 3, respectively, a complete simulation framework was developed
in Chapter 5. The integration of the sub-systems with a haptic device, a user interface, and
with each other was also addressed in that chapter. The presented technique can simulate re-
alistic ultrasound images coupled with a physically-based deformation model. This simulation
addresses several desired aspects of typical needle insertion applications, such as simulating
haptics and imaging, and acquiring patient models, making it a first in its field.

This work is novel and has the potential for an immediate and significant impact on the
practice of brachytherapy. There is great interest and enthusiasm in such a training system
for prostate brachytherapy from our medical collaborators and hence it has strong potential
to serve in a clinical training setting. While extremely important to brachytherapy, there are
many other procedures, from biopsy to drug delivery, that require accurate targeting, and
hence a fast simulation. Techniques developed for the simulation of needle insertions are also
applicable to haptic surgical simulators and planners in general. Planning and correction of
needle insertion paths require the prediction such path [25]. The proposed simulator is also of
use in such applications.

For an accurate simulation of the tissue deformation during needle insertion, mechanical
properties of the tissue have to identified first. Recent advances in elastography techniques

107



Chapter 6. Conclusions and Future Research

allow for such parameter acquisition [20–23]. Other parameters required by needle-tissue inter-
action model are the shaft friction and tip cutting forces for each tissue type/interface. There
exist methods proposed to identify such parameters in the literature [27,28]. Nevertheless, no
such method has yet been applied and recovered the brachytherapy needle interaction param-
eters in-vivo. Therefore, approximate values were used in the current simulation and must be
addressed for a clinical use.

6.1.6 Patient-Specific Modeling

In this thesis, the models for the finite element simulation of tissue deformation during brachy-
therapy procedures were obtained from pre-operative MR images. These models are subse-
quently registered to the ultrasound voxel volumes using the prostate surface in both models.
Currently, a rigid registration approach is followed. Nevertheless, given the pelvic bone (and
possibly other anatomical structures) delineated manually or automatically in ultrasound im-
ages, elastic registration techniques can also be employed.

It is also possible to generate FEM models using elastography imaging. The use of such
images in an automatic meshing technique and the application of this technique given a voxel
volume were studied separately in Chapters 2 and 5, respectively. The author believes that
currently available and recently emerging techniques in elastography [21] combined with the
proposed mesh generation method in Chapter 2 is the future of fully-automatic physically-
based patient modeling.

6.2 Future Work

The algorithms presented in this thesis yield novel methods for the simulation of minimally-
invasive procedures, in particular needle insertion. A prostate brachytherapy simulator was
the application platform for these methods and hence the direct outcome of this thesis. This
training platform is important for presenting the value of simulated ultrasound in creating a re-
alistic simulation environment. The proposed brachytherapy system was designed as a tool for
clinical training, patient-specific rehearsal, and treatment planning. Nevertheless, the methods
developed are applicable to several other procedural setups, such as biopsy (e.g. in prostate,
breast, liver, brain), lumbar puncture, and epidural needle insertions. The methodology and
ideas in this thesis can be easily packaged in a marketable product for clinical use.

The presented ultrasound simulation alone can also be used in other applications, such as
in fast deformable registration. This simulation technique applies similarly to fast slicing of
images from other modalities to be used for registration, training, or any other purpose. The
proposed meshing technique introduces a novel approach, which has the potential to change
the traditional “first segment, then mesh” view of model generation from medical images.
The proposed technique is anticipated to promote further research in similar energy-based
formulations for meshing from images, which will lead to optimal and automatic meshing for
simulations.

A number of interesting and relevant areas of future work can be pursued from here. Some
of these are as follows:

∙ Identification of the needle interaction model parameters (friction/cutting) for individual
tissue types/patients, for which tracking using ultrasound as in [28] may be used.
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∙ Comparison and validation of haptic force-feedback in the simulator with in-vivo needle
insertions. For this, (𝑖) an instrumented needle can be used intra-operatively to measure
forces, or (𝑖𝑖) a clinical user study can be performed with experienced physicians using
our simulator.

∙ Modeling and simulation of the deflection caused by tip bevel. This could extend to
needles that are purposely steered in tissue.

∙ A clinical simulator system to be used in training, with template overlay in B-mode,
etc, and including procedural details such as choosing needles. Possibly, the deformation
caused by the probe motion can also be simulated.

∙ Validation of the ultrasound simulation for prostate imaging. In-vivo ultrasound images
can be compared with the images generated by the simulator. Although this may include
possible errors in modeling the tissue and needle interaction, such a study has not been
done before and would quantify the simulator realism.

∙ Validation of the predicted seed locations using our simulator against the seed locations
identified from a medical imaging modality. The seeds may be located using B-mode
ultrasound, fluoroscopy, or emerging elastography techniques. While locating all im-
planted seeds in brachytherapy is an active field of research, localizing a few seeds can
be sufficient for validation.

∙ Designing a completely automatic patient modeling system with the possible integration
of elastography and variational meshing. Given that such models are obtained rapidly,
the proposed insertion simulation can be used intra-operatively for on-the-fly treatment
planning/correction.

∙ Experiments with targeting and treatment-planning using the proposed system on phan-
toms and patients.
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Appendix A

Algebraically Defining the Interior
1-ring Neighbourhood

For a node x = {𝑥, 𝑦, 𝑧}𝑇 with 𝑘 neighbouring tetrahedra in its 1-ring, a system of inequalities
can be written as the polyhedron constraint as follows:

𝐴𝑘×3x3×1 < 𝑏𝑘×1 (A.1)

omitting the subscript 𝑖 since only a single node is explained here. Each inequality on each row
refers to a neighbouring element and can be defined for the node to be on the interior side of
that outer face. Let us define one such row, where the other three corners of the element are
known positions x1, x2, and x3. Assuming that these element nodes are ordered right-handed,
x can be guaranteed to be on the interior side by checking the following constraint:∣∣∣∣∣∣∣∣

𝑥 𝑥1 𝑥2 𝑥3

𝑦 𝑦1 𝑦2 𝑦3
𝑧 𝑧1 𝑧2 𝑧3
1 1 1 1

∣∣∣∣∣∣∣∣
> 0 (A.2)

where ∣ ⋅ ∣ is the determinant of a matrix. Note that this indeed bounds the volume of that ele-
ment to be positive for that given node order. To yield the structure in (A.1), this determinant
can be rewritten as follows:

− 𝑥

∣∣∣∣∣∣
𝑦1 𝑦2 𝑦3
𝑧1 𝑧2 𝑧3
1 1 1

∣∣∣∣∣∣− 𝑦

∣∣∣∣∣∣
𝑥1 𝑥2 𝑥3

𝑧1 𝑧2 𝑧3
1 1 1

∣∣∣∣∣∣− 𝑧

∣∣∣∣∣∣
𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3
1 1 1

∣∣∣∣∣∣ <

∣∣∣∣∣∣
𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3
𝑧1 𝑧2 𝑧3

∣∣∣∣∣∣ (A.3)

𝐴1×3x3×1 < 𝑏1×1 (A.4)
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Appendix B

Resolving Pixel Discretization
Conflicts

The correct element for marking a pixel in conflict depends on the scan-line direction. Normally,
a pixel on an edge intersection must be labeled by the element which a line scan passing through
that pixel is just entering. For instance, in Fig. 3.7(d), with respect to our chosen scan-line
direction, the pixels immediately below pixel 𝑃 belong to 𝑒7, thus 𝑃 should be labeled as 7.

To resolve such discretization conflicts, we first sort the cross-sections prior to marking
them. Discretizing the cross-section edges on image pixels given a suitable order enables each
cross-section label to over-write a previous one by leaving the desired label on the pixel in the
end. To formulate such a sorting so that the last value marking a pixel is the correct one,
consider a pair of neighbouring cross-sections. A scan-line passing through both of these will
visit first one and then the other, since they are convex polygons. Furthermore, the order will
be the same for every scan-line traversing both cross-sections. Note that, for a scan-line to
correctly locate the pixels below a corner (or, similarly, an edge) shared by these cross-sections,
those shared pixels need to be marked by the last-traversed cross-section. In Fig. 3.7(d), 𝑒7
is the latter-traversed element cross-section. Therefore, 𝑒7’s edges have to be discretized after
𝑒6’s, consequently, label 7 over-writes label 6.

This traversal precedence criterion is indeed a partial ordering relation in-between all the
pairs of neighbouring element cross-sections in the image plane. Let ‘<’ denote this relation
such that 𝑒𝑖 < 𝑒𝑗 indicates that 𝑒𝑗 is traversed later than 𝑒𝑖 by any given scan-line. Due to the
convex cross-section geometry, this relation is transitive such that:

(𝑒𝑖 < 𝑒𝑗) and (𝑒𝑗 < 𝑒𝑘) =⇒ (𝑒𝑖 < 𝑒𝑘) (B.1)

Therefore, all cross-sections can be represented by a directed acyclic graph 7, where the in-
tersected elements are the nodes and their traversal precedence orders are the directed graph
edges connecting the pairs of neighbouring elements. Such a graph can be sorted linearly into
a global (total) order that satisfies every given partial order relation. This procedure is called
topological sorting 7. Note that there may exist more than one such global ordering, any of
which can be used for our purposes. For example, the illustration of cross-sections in Fig. B.1(a)
has a graph as shown in Fig. B.1(b), and one possible ordering of this graph is as follows:

𝑒10 < 𝑒2 < 𝑒9 < 𝑒1 < 𝑒8 < 𝑒4 < 𝑒3 < 𝑒5 < 𝑒6 < 𝑒7 < 𝑒11 (B.2)

7T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. MIT Press
& McGraw-Hill, 2001.
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Figure B.1: (a) An illustration of element partial ordering and (b) its corresponding directed
graph.
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Appendix C

Undeforming Using Barycentric
Coordinates

The 3D position of a point 𝒙 = [𝑥 𝑦 𝑧]𝑇 inside a tetrahedral element 𝑒, seen in Fig. C.1(a), can
be expressed as follows:

𝒙 =

4∑
𝑘=1

𝑟𝑘𝒄𝑘 (C.1)

where 𝑟𝑘 are the barycentric coordinates with respect to the element corners 𝒄𝑘 = [𝑥𝑘 𝑦𝑘 𝑧𝑘]
𝑇 ,

which are the deformed node positions. This equation can be rewritten for normalized coordi-
nates in the following matrix form:⎡

⎢⎢⎣
𝑥
𝑦
𝑧
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

𝑥1 𝑥2 𝑥3 𝑥4

𝑦1 𝑦2 𝑦3 𝑦4
𝑧1 𝑧2 𝑧3 𝑧4
1 1 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

𝑟1
𝑟2
𝑟3
𝑟4

⎤
⎥⎥⎦ (C.2)

𝒙 = 𝐶𝒓 (C.3)

so that the barycentric coordinates can be found as 𝒓 = 𝐶−1𝒙.
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Figure C.1: (a) A deformed element at a time instant 𝑡 and an image pixel X lying within;
and (b) the nominal pre-deformed geometry of this same element with the corresponding
undeformed pixel location.

The point 𝒙0 seen in Fig. C.1(b) corresponding to the same barycentric coordinates in
the nominal pre-deformed configuration of the same element can also be written similarly as
𝒙0 = 𝐶0𝒓 for the nominal node positions of 𝒄𝑘. As a result, this corresponding nominal location
is found as:

𝒙0 = 𝐶0𝐶−1𝒙 (C.4)

𝒙0 = 𝑇𝑒𝑠𝒙 . (C.5)

116



Appendix D

Euler-Bernoulli Beam Element

The strain energy in a beam can be written as:

𝑈 =
1

2

∫
𝑉

[
𝐸𝜖2𝑥𝑥 + 4𝐺

(
𝜖2𝑥𝑦 + 𝜖2𝑥𝑧

)]
d𝑉 , (D.1)

where 𝐸 and 𝐺 are the Young’s and shear moduli, respectively. Substituting (4.9)–(4.11)
in (D.1), one can write the strain energy as 8:

𝑈 =
𝐺𝐽

2

∫ (
∂𝛼0

∂𝑥

)2
d𝑥+

𝐸𝐴

2

∫ (
∂𝑢0

∂𝑥

)2
d𝑥

+
𝐸𝐼𝑧
2

∫ (
∂2𝑣0
∂𝑥2

)2
d𝑥+

𝐸𝐼𝑦
2

∫ (
∂2𝑤0

∂𝑥2

)2
d𝑥

+
𝐸𝐴

2

∫ [(
∂𝑢0

∂𝑥

)(
∂𝑣0
∂𝑥

)2
+

(
∂𝑢0

∂𝑥

)(
∂𝑤0

∂𝑥

)2]
d𝑥

+
𝐸𝐴

8

∫ [(
∂𝑣0
∂𝑥

)4
+

(
∂𝑤0

∂𝑥

)4
+ 2

(
∂𝑣0
∂𝑥

)2(∂𝑤0

∂𝑥

)2]
d𝑥

(D.2)

where 𝐴 is the cross-sectional area, and 𝐽 = 𝐼𝑦 + 𝐼𝑧 where 𝐼𝑦 and 𝐼𝑧 are the second moments
of inertia about the 𝑦 and 𝑧 axes, respectively. By substituting (4.12)–(4.15) in (D.2), the
beam strain energy can be written as a function of nodal variables. Using the virtual work
principle, the relation between the nodal variables and nodal forces/torques can be derived by
symbolically differentiating the strain energy with respect to the nodal variables. Based on the
structure of the equations for a beam element (interpolation functions and energy equation),
this can be written in the form of (4.16) which is detailed as follows:

𝑓 =

⎡
⎢⎢⎢⎣
K11

(2×2) K12
(2×2) K13

(2×4) K14
(2×4)

K21
(2×2) K22

(2×2) K23
(2×4) K24

(2×4)

K31
(4×2) K32

(4×2) K33
(4×4) K34

(4×4)

K41
(4×2) K42

(4×2) K43
(4×4) K44

(4×4)

⎤
⎥⎥⎥⎦𝑢 (D.3)

𝑢 =[𝑢𝑝 𝑢𝑝+1 𝛼𝑝 𝛼𝑝+1 𝑣𝑝 𝜙𝑝 𝑣𝑝+1 𝜙𝑝+1 𝑤𝑝 𝜓𝑝 𝑤𝑝+1 𝜓𝑝+1]
′ (D.4)

𝑓 =[𝑓𝑥
𝑝 𝑓𝑥

𝑝+1 𝜏
𝑥
𝑝 𝜏𝑥𝑝+1 𝑓

𝑦
𝑝 𝜏𝑦𝑝 𝑓𝑦

𝑝+1 𝜏
𝑦
𝑝+1 𝑓

𝑧
𝑝 𝜏 𝑧𝑝 𝑓𝑧

𝑝+1 𝜏
𝑧
𝑝+1]

′ (D.5)

8I. Sharf, “Geometrically non-linear beam element for dynamics simulation of multibody systems,” Int J of
Numerical Methods in Engineering, vol. 39, pp. 763–786, 1996.
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where 𝑢 is the vector of nodal variables; 𝑓𝑥, 𝑓𝑦, and 𝑓𝑧 are the nodal forces; and 𝜏𝑥, 𝜏𝑦 and
𝜏 𝑧 are the nodal torques. The blocks of the stiffness matrix K can be calculated as follows 9:

K11(𝑖, 𝑗) = 𝐸𝐴

∫
𝐿
�̇�𝑖 �̇�𝑗 d𝑥 , (D.6)

K22(𝑖, 𝑗) = 𝐺𝐽

∫
𝐿
�̇�𝑖 �̇�𝑗 d𝑥 , K2𝑡 = K𝑡2 = 0 ∀𝑡 ∕=2 , (D.7)

K31(𝑖, 𝑗) = 2K13(𝑖, 𝑗) = 𝐸𝐴

∫
𝐿
�̇�0 �̇�𝑖 �̇�𝑗 d𝑥 , (D.8)

K33(𝑖, 𝑗) = 𝐸𝐼𝑧

∫
𝐿
�̈�𝑖 �̈�𝑗 d𝑥+

1

2
𝐸𝐴

∫
𝐿
�̇�20 �̇�𝑖 �̇�𝑗 d𝑥 , (D.9)

K34(𝑖, 𝑗) = K43(𝑗, 𝑖) =
1

2
𝐸𝐴

∫
𝐿
�̇�0 �̇�0 �̇�𝑖 �̇�𝑗 d𝑥 , (D.10)

where 𝐿 is the element length; ˙( ) = ∂
∂𝑥 and (̈ ) =

∂2

∂𝑥2 . BlocksK14, K41, andK44 are computed
similarly to (D.8) and (D.9) by substituting 𝑤0 for 𝑣0 and 𝐼𝑦 for 𝐼𝑧.

During the bending of a cantilever beam, such as the needle, no stretching occurs on the
beam’s neutral axis. Therefore, the strain component 𝜖𝑥𝑥 in (4.9) should be equal to zero on
the beam axis. However, this constraint cannot be met since 𝑣0 and 𝑤0 are interpolated by
cubic functions while a linear interpolation function is employed for 𝑢0. As a result, membrane
locking occurs resulting in an over-stiff element 9. One solution for the membrane locking
problem is to use one-point Gauss quadrature or reduced integration for the calculation of the
sub-matrices of K that include �̇�0 or �̇�0 in (D.8)-(D.10)

9. Other parts can still be integrated
using two-point Gauss quadrature.

As seen in (D.7), nodal twists and axial torques (the second row/column blocks of the
K matrix) form a separate linear set of equations that is independent of the other variables,
i.e. the lateral forces and torques. Therefore, if the twist angles or the twisting torques are
negligible, these rows/columns responsible for twist can be removed to decrease the dimension
of the stiffness matrix.

9J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, 2004.
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Appendix E

Angle of Deflection for a Bending
Moment

Consider a short section of a beam bent under a constant uniform bending moment 𝜏𝑏. Fig-
ure E.1 shows its neutral axis of length 𝐿, that is located along a radius of curvature 𝜌. Let
𝑐 be the distance of the neutral axis from the outer fibre. From the similarity of the arcs, we
obtain the following:

𝐿+ 𝛿

𝐿
=

𝜌+ 𝑐

𝜌
⇒ 𝛿

𝐿
=

𝑐

𝜌
(E.1)

The fibre strain 𝜖(𝑥) of a fibre at a radial distance 𝑥 to the neutral fibre is given as:

𝜖(𝑥) =
𝜏𝑏 𝑥

𝐸 𝐼
(E.2)

where 𝐸 is the Young’s modulus of the material and 𝐼 is the moment of inertia of the section.
Substituting (E.1) in the definition of the outer fibre strain 𝜖(𝑐) = 𝛿/𝐿, which is the amount of
elongation divided by the initial length, gives 𝜖(𝑐) = 𝑐/𝜌. Substituting this in (E.2) for a fibre
distance of 𝑐 results in:

𝜖(𝑐) =
𝜏𝑏 𝑐

𝐸 𝐼
=

𝑐

𝜌
⇒ 𝜏𝑏

𝐸 𝐼
=
1

𝜌
. (E.3)

An arc of angle 𝜔 at radius 𝜌 has a length 𝐿 = 𝜔𝜌. Thus, (E.3) can be rewritten as follows:

𝜏𝑏
𝐸 𝐼

=
𝜔

𝐿
⇒ 𝜔 =

𝜏𝑏 𝐿

𝐸 𝐼
. (E.4)

Note that the bending angle 𝜔 is equal to the angle of curvature 𝜃. Thus, the linear relation
between the bending moment and the angle of deflection can be written as 𝜃 = 𝜏𝑏/𝑘𝑏 where
𝑘𝑏 = 𝐸𝐼/𝐿 .

ñ
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¿b
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¿b

Figure E.1: A short section of a bent cantilever.
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Appendix F

Angle of Deflection for a Torsional
(Twisting) Moment

The angular deflection 𝛼 of a shaft under torsional moment 𝑀 can be expressed as:

𝛼 =
584𝐿𝜏𝑡
𝐺𝐷4

=
𝜏𝑡
𝑘𝛼

(F.1)

where 𝐿 is the length of the twisting section, 𝐺 is the shear modulus of the material, and 𝐷 is
the shaft radius.
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