Reconstructing Cerebrovascular Networks under Local Physiological Constraints by Integer Programming

Markus Rempflera,b,*, Matthias Schneiderb,c, Giovanna D. Ielacquad, Xianghui Xiaoe, Stuart R. Stockf, Jan Klohsd, Gábor Székelyb, Bjoern Andresg, Bjoern H. Menzea,h

aDepartment of Computer Science, TU München, Germany
bComputer Vision Laboratory, ETH Zürich, Switzerland
cInstitute of Pharmacology and Toxicology, University of Zürich, Switzerland
dInstitute for Biomedical Engineering, University and ETH Zürich, Switzerland
eAdvanced Photon Source, Argonne National Laboratory, USA
fFeinberg School of Medicine, Northwestern University, Chicago IL, USA
gMax Planck Institute for Informatics, Saarbrücken, Germany
hInstitute for Advanced Studies, TU München, Germany

Abstract

We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to a probabilistic model. Starting from an overconnected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of our probabilistic model and we perform experiments on in-vivo magnetic resonance microangiography (µMRA) images of mouse brains. We finally discuss properties of the networks obtained under different tracking and pruning approaches.

Keywords: vascular network extraction, vessel segmentation, vessel tracking, cerebrovascular networks, integer programming, structured prediction

*Corresponding author
1. Introduction

Many diseases affect general properties of the cerebrovascular network, examples are arteriosclerosis and dilative vascular malformations changing vessel shape and diameter, but also Alzheimer’s and related neuro-degenerative diseases are suspected to affect the general vascularity and global network properties [1, 2]. Studies investigating such diseases frequently use mouse models for experiments and commonly acquire in-vivo cerebrovascular imagery by means of magnetic resonance microangiography (µMRA). While segmenting and tracing tubular structures is a longstanding field of interest in medical image computing [3, 4, 5, 6], we approach here the wider – and somewhat neglected [7] – problem of extracting the full vascular network from image volumes under consideration of local geometric properties and global constraints of the vascular structure.

Most vessel segmentation techniques rely on tubularity measures or other vessel enhancement filters [3], and then apply rule-based or learned decision algorithms to segment the vessels [5, 6, 8]. The network graph - representing vessels by their centerline, complemented with additional information such as local radii – can be extracted from binary segmentations using morphological operators [9, 10], or by tracking vessels directly by minimal path techniques [11], e.g. by applying a fast marching algorithm [12] or a Dijkstra-like scheme [13]. We point the interested reader to [5, 6] for more extensive reviews. In most applications, however, the extracted graphs need further post-processing: Lu et al. [14], for example, incorporated discriminative classifiers that examine local geometrical features of segments into a hierarchical approach for vessel-structure parsing.

In order to deal with imperfections in vascular connectivity of extracted networks, Kaufhold et al. [15] discussed a supervised learning approach to gap filling and network pruning, whereas Schneider et al. [16] recently proposed a generative method for gap in-fill that is guided by a simplified angiogenesis model. While segmentation algorithms are likely to enforce expected local vessel shape and geometry, only few approaches consider both local properties and
global network connectivity when extracting the full network: Jiang et al. [17] incorporated assumptions about vessel diameters (Murray’s hypothesis [18]) in a global optimization problem restricted to vascular trees. Tree shape priors have also been included into the segmentation of vasculature by [19]. In a different application, Türetken et al. [20] introduced recently an integer programming approach that evaluates path coherence and connectivity of general curvilinear structures, such as streets in remote-sensing images or vessels in confocal image stacks. Starting from an overconnected graph, they are pruning edges that do not fulfill desired structural relationships of neighbouring segment pairs using a path classifier that is trained from annotated 3-D networks.

All of these approaches enforce local coherence within the extracted network – a general property of the vascular network. More complex local properties of a structural network, however, can be described by network motifs [21, 22]. Network motifs are frequently recurring subgraphs, also called building blocks, that are characteristic for a type of network, such as bifurcations in vascular networks.

In this paper, we enforce local geometrical properties similar to Jiang et al. [17], exploring the relevance of two basic motifs of vascular networks, i.e., the geometrical properties of continuing segment pairs and of vessel bifurcations and following the idea of pruning of Türetken et al. [20]. We present a probabilistic model which combines this geometric prior with local vessel evidence obtained from a segmentation algorithm [8], and show that the maximum a posteriori (MAP) estimate can be computed by an integer linear program (ILP). We learn the global statistic of geometrical properties of the network motifs from a high resolution dataset. Finally, we identify a more efficient scheme to solve the ILP for large datasets and illustrate its application for reconstructing vascular networks from in-vivo µMRA images of the mouse brain.
Figure 1: Workflow: In a first stage (gray box), the image volume I is processed so as to obtain an overconnected graph G^{over} as well as a confidence measure for vessels such as the confidence map $P(I)$. In the following step, the network G^* is extracted from G^{over} in an optimization scheme that considers both image evidence (according to $P(I)$) and geometric-physiological prior knowledge. In this paper, we focus on the network optimization step (blue), where both image evidence and geometrical relationships of certain network motifs, namely continuing pairs and bifurcations are considered.

2. Methods

In this section, we detail on the proposed vessel network extraction method that estimates the most probable network under consideration of image evidence and physiological prior knowledge. As depicted in the workflow (Fig. 1), this method starts from an overconnected network graph G^{over}. Hence, we briefly review the applied segmentation framework and skeletonization method as used in our experiments.

2.1. Vessel Segmentation Method and Construction of the Overconnected Graph

As a first stage, we transform image intensities into confidence maps by using the framework of Schneider et al. [23, 8]: In this approach, multiscale steerable filter templates (SFT) are used as efficient directional filters, offering features that are invariant with respect to the local vessel direction. An oblique random forest (RF) [24], which determines splits by solving a linear regression with elastic net penalty in each node, is used for a subsequent classification. The RF assigns each voxel v in an image volume I to a probability $p_v \in [0, 1]$, indicating the local presence of a vessel-like structure.
We apply a threshold θ to the probability volume $P(I)$ and skeletonize the resulting binary volume using distance-ordered homotopic thinning (DOHT)\cite{9}, a method that iteratively removes voxels without altering the objects topology, to derive a network graph $G(\theta)$. We obtain an overconnected network by generating multiple binary segmentations from $P(I)$ with different thresholds $\{\theta_i\}$, skeletonizing each of them by DOHT to $G(\theta_i)$ and superposing them into one network $G^{\text{over}}(\{\theta_i\})$. The resulting network contains both segments with low confidence (contributed by graphs from low thresholds θ close to 0), but maintains the high spatial accuracy of a graph that is generated from conservative thresholds (i.e., with θ close to 1). Note, however, that any method which generates an overconnected graph G^{over} by proposing local vessel connections could be used instead.

2.2. Vessel Network Extraction

The goal of our method is to find the most plausible network G^* out of an overconnected network graph $G^{\text{over}} = (V, E)$ with edges $E = \{e_i\}$ and given image evidence $P(I)$. We encode subgraphs of G^{over} with a set of binary variables $X = \{x_i\}$ where each x_i indicates whether or not the corresponding segment $e_i \in E$ is active (i.e. $x_i = 1$). Therefore, we arrive at the equivalent problem of determining the MAP estimate of $x \in \{0, 1\}^{|E|}$, for which we describe a probabilistic model (Sect. 2.2.1) that considers image evidence, local properties of specific network motifs as well as global connectivity, and derive an ILP that allows computing the MAP network (Sect. 2.2.2).

2.2.1. Probabilistic Model

We formulate a probabilistic model $P(X = x, \Omega|I, G)$ according to Fig. 2 where I is the image evidence, G is the given (overconnected) graph and X is the set of binary variables denoting subgraphs of G. Ω is the set of all feasible solutions of x:

$$\Omega = \{ x \in \{0, 1\}^{|E|} : Ax \geq b \} ,$$

\hspace{1cm} (1)
Figure 2: Probabilistic model. I: Image; G: (overconnected) Graph; X: Set of binary variables denoting subgraphs of G; Ω: Set of feasible configurations of x.

with $Ax \geq b$ being the short notation for all hard constraints that will be considered such as those enforcing connectivity. This introduces a probabilistic interpretation, as in [25], of the hard constraints that we impose on the extracted networks.

According to the given probabilistic model in Fig. 2, we arrive at the posterior distribution for x:

$$P(X = x|I, G, \Omega) \propto P(\Omega|X = x) P(X = x|I, G).$$ \hspace{1cm} (2)

Next, we model $P(X = x|I, G)$ as a Markov random field (MRF):

$$P(X = x|I, G) = \frac{1}{Z} \prod_{x_i \in X} \phi_i(x_i; I, G) \prod_{x_i, x_j \in X; \text{adjacent}} \phi_{i,j}(x_i, x_j; I, G) \prod_{x_i, x_j, x_k \in X; \text{adjacent}} \phi_{i,j,k}(x_i, x_j, x_k; I, G),$$ \hspace{1cm} (3)

where Z is the partition function and $\phi(.)$ are the potentials, which are defined in the following. $\alpha > 0$ is a parameter to adapt the trade-off between unary and higher order potentials. For each segment represented by x_i, we set the unary potential:

$$\phi_i(x_i; I, G) = \begin{cases}
P(x_i = 1|I_i, E_i) & \text{if } x_i = 1, \\
P(x_i = 0|I_i, E_i) & \text{otherwise},
\end{cases} \hspace{1cm} (4)$$

where $P(x_i = 1|I_i, E_i)$ can be understood as image evidence that the segment x_i is part of the underlying vasculature and a valid segment of the network. The higher-order potentials are chosen as:

$$\phi_{i,j}(x_i, x_j; I, G) = \begin{cases}
p_{C,ij} & \text{if } x_i x_j = 1, \\
p_T & \text{otherwise},
\end{cases} \hspace{1cm} (5)$$
and

\[\phi_{i,j,k}(x_i, x_j, x_k; I, G) = \begin{cases} p_{B,ijk} & \text{if } x_i x_j x_k = 1 , \\ p_{C,ij} & \text{if } x_i x_j = 1 \land x_i x_j x_k = 0 , \\ p_T & \text{otherwise} . \end{cases} \] (6)

where \(p_{C,ij} \) is the likelihood of \(e_i \) continuing in \(e_j \), \(p_{B,ijk} \) the likelihood of a bifurcation involving \(e_i \), \(e_j \) and \(e_k \), and \(p_T \) represents the possibility that neither of them occur and the vessel terminates. Note that both binary and ternary potentials in (3) account for the relationships of multiple segments, hence we can split \(P(X = x|I, G) \) into a pure image evidence term – containing only the unary potentials \(\phi_i(.) \) – and a prior term consisting of both \(\phi_{i,j}(.) \) and \(\phi_{i,j,k}(.) \).

2.2.2. Maximum A Posteriori Estimation by Integer Programming.

So far, we translated the problem of finding the most plausible subnetwork in \(G^{\text{over}} \) into determining the MAP estimate \(x^* \) of (2):

\[x^* = \arg \max_{x \in X} P(X = x|I, G, \Omega) = \arg \max_{x \in X} P(\Omega|X = x) P(X = x|I, G) , \] (7)

where \(X = \{0, 1\}^{|E|} \) is the set of all configurations of \(x \). In the following, we are going to derive an ILP to determine \(x^* \). We start by specifying the likelihood \(P(\Omega|X = x) \) to be equal for all feasible \(x \) and 0 else, i.e.

\[P(\Omega|X = x) \propto \begin{cases} 1 & \text{if } x \in \Omega , \\ 0 & \text{otherwise} . \end{cases} \] (8)

Applying this definition leads to:

\[x^* = \arg \max_{x \in X} P(\Omega|X = x) P(X = x|I, G) \] (9)

\[= \arg \max_{x \in \Omega} P(X = x|I, G) . \] (10)

From (10), the definition of the MRF (2), its potentials (4) to (6) and the fact that each pseudo-boolean function has a unique multilinear polynomial form, it
follows that the \text{MAP} estimate x^* takes the form of the integer program:

$$\min_x J(x) = \alpha \sum_{x_i \in X} w_i x_i + \sum_{x_i, x_j \in X; e_{i,j} \text{ adjacent}} w_{ij} x_i x_j + \sum_{x_i, x_j, x_k \in X; e_{i,j}, e_{j,k} \text{ adjacent}} w_{ijk} x_i x_j x_k ,$$

s.t. $Ax \geq b$,

$$x_i \in \{0,1\} \quad \forall x_i \in X ,$$

with the weights w_i, w_{ij} and w_{ijk} derived as

$$w_i = -\log \frac{P(x_i = 1|I_i, E_i)}{P(x_i = 0|I_i, E_i)} ,$$

$$w_{ij} = -\log \frac{p_{C,ij}}{p_{T}} ,$$

$$w_{ijk} = -\log \frac{p_{B,ijk}p_{T}^2}{p_{C,ij}p_{C,ik}p_{C,jk}} .$$

The derivation is given in the appendix.

2.2.3. Computing the Weights

\textbf{Image Evidence.} The weights derived from the unary potentials of the \text{MRF} allow us to account for image evidence observed for each segment represented by x_i separately. To infer $P(x_i = 1|I_i, E_i)$ from the image evidence, we average the probabilistic output p_v of the classification along voxels v assigned to the segment e_i. We define $P(x_i = 1|I_i, E_i) = p_i$ and compute:

$$w_i = -\log \frac{p_i}{1-p_i} .$$

\textbf{Geometric Prior.} As depicted in Fig. 3 we consider two network motifs and weight them accordingly with the derived w_{ij} and w_{ijk}. In order to compute these, we evaluate angles between the involved segments – denoted with γ_{ij} and γ_{ijk} (cf. Fig. 3c) – under consideration of their estimated radii and define:

$$w_{ij} = -\log \frac{p_{C,ij}p_{T}}{p_{T}} = -\log \frac{P(\gamma_{ij}|\text{continue}, \Theta) P(\text{continue}|\Theta)}{P(\gamma_{ij}|\text{terminate}, \Theta) P(\text{terminate}|\Theta)} ,$$

$$w_{ijk} = -\log \frac{p_{B,ijk}p_{T}^2}{p_{C,ij}p_{C,ik}p_{C,jk}}$$

$$= -\log \frac{P(\gamma_{ijk}|\text{branch}, \Theta) P(\text{branch}|\Theta) P(\text{terminate}|\Theta)}{\prod_{(i',j') \in 2^{(i,j,k)}} P(\gamma_{i'j'}|\text{continue}, \Theta) P(\text{continue}|\Theta)^2} .$$
Figure 3: Illustration of network motifs that are considered by the physiological model and the variables at a potential bifurcation. a) Pairs of continuing segments and b) triplets that form a bifurcation (illustrated in red). c) Variables at a potential bifurcation: Segments, e.g. x_i, are drawn as solid black lines, while a pairwise variable y_{ij} that represents x_i continuing in x_j is depicted by the dark grey overlay (y_{ik} and y_{jk} are omitted for clarity). z_{ijk} corresponds to all three adjacent edges in the bifurcation (light grey). Furthermore, both deviation angles γ_d (blue) and the inner angle γ_{in} (red) are shown. Radii are estimated perpendicular to the edge direction. In our experiments, we consider geometric features $\gamma_{ijk} = (\gamma_{in}, \gamma_{d1}, \gamma_{d2})_{ijk}$ for bifurcations and $\gamma_{ij} = (\gamma_{d})_{ij}$ for continuing segments, while radius estimates are used to determine the main trunk.

where Θ is the parametric model that encodes physiologically realistic geometric properties of the network motifs in terms of distributions over the considered geometric features γ_{ij} and γ_{ijk}. The probabilities $p_{C,ij}, p_{B,ijk}$ and p_T originate from the definitions in (5) and (6). In this case, $P(\gamma_{ij} | \text{continue}, \Theta)$ describes the likelihood of observing angle γ_{ij} in a continuing pair, and $P(\text{continue}|\Theta)$ is the prior on how frequent continuing pairs occur. We will discuss the choice of such a model Θ in our experiments (Sect. 3.3) where we fit them to evidence from high-resolution network data.

2.2.4. Global Connectivity

An essential aspect when extracting vascular networks from noisy or incomplete data is to enforce connectivity between the observed components in the network. In our approach, we enforce this property by hard constraints:

$$\sum_{x_i \in M} x_i < |M| + \sum_{x_j \in N} x_j \quad \forall M \subset X \setminus x_{\text{seed}},$$

(21)
where M is a set of connected segments and N its neighbourhood. In other words, a subset M of segments that form one connected structure can only be active, if there is an incoming segment (or it is adjacent to the seed). As there are exponentially many constraints, we follow a lazy constraint generation approach and iteratively add those which are required (cf. Sect. 2.2.6).

2.2.5. Linear Formulation

We note that the integer program in (11) contains second and third order relations between variables. To deal with these, we exploit the binary nature of the variables x_i and introduce additional auxiliary variables $Y = \{y_{ij}\}$ and $Z = \{z_{ijk}\}$ to substitute these products (x_ix_j and $x_ix_jx_k$) in the objective. A set of linear constraints ties the auxiliary variables to the corresponding indicator variables $\{x_i\}$ such that $y_{ij} = x_ix_j$ and $z_{ijk} = x_ix_jx_k$ holds for all feasible solutions:

\begin{align}
 y_{ij} & \leq x \quad \forall x \in \{x_i,x_j\}, \forall y_{ij} \in Y, \quad (22) \\
 y_{ij} & \geq x_i + x_j - 1 \quad \forall y_{ij} \in Y, \quad (23) \\
 z_{ijk} & \leq x \quad \forall x \in \{x_i,x_j,x_k\}, \forall z_{ijk} \in Z, \quad (24) \\
 z_{ijk} & \geq x_i + x_j + x_k - 2 \quad \forall z_{ijk} \in Z, \quad (25)
\end{align}

which leads to the ILP

\[
J(x, y, z) = \alpha \sum_{x_i \in X} w_i x_i + \sum_{y_{ij} \in Y} w_{ij} y_{ij} + \sum_{z_{ijk} \in Z} w_{ijk} z_{ijk},
\]

s.t. \(A'(x, y, z) \geq b' \), \hspace{1cm} (27)

\begin{align}
 x_i & \in \{0,1\} \quad \forall x_i \in X, \quad (28) \\
 y_{ij} & \in \{0,1\} \quad \forall y_{ij} \in Y, \quad (29) \\
 z_{ijk} & \in \{0,1\} \quad \forall z_{ijk} \in Z, \quad (30)
\end{align}

where we summarized the constraints (22) to (25) together with (12) in (27). \((x, y, z)\) is the concatenation of all binary variables to a column vector of all variables. We can solve the linear problem of (26) by a branch and cut algorithm implemented in libraries such as [28].
2.2.6. Solving the Integer Programming Problem for Large Datasets

The described integer programming problem of (26) with the associated constraints grows quickly for large graphs that result from whole brain scans. To tackle this problem, we propose to employ a lazy constraint generation scheme together with the following approach:

1. Given the variable set X of the ILP define a graph $A = (V_A, E_A)$ with a vertex $v_i \in V_A$ for every $x_i \in X$.
2. Add an edge e_{ij} to E_A if and only if there exists a constraint that contains both variables x_i and x_j.
3. Determine the connected components in A. Vertices of each connected component represent a sub-problem that can be solved independently – of course with their according constraints.

Whenever a constraint or variable is added, we adjust the graph A dynamically. Then only sub-problems – i.e. variable sets represented by connected components of A that are affected by the change – need to be solved, speeding up the performance over approaches that solve the complete problem in every run. Lazy constraint generation is a known concept in integer programming, which was, for example, already applied to the famous travelling salesman problem [26], whereas the dynamic sub-problem handling is novelty of our approach. Employing this scheme does not deteriorate the solutions quality, that is its objective value in terms of the cost function $J(.)$ in (11). However, the solution x^* is in general not unique and hence, solutions obtained from different optimizers are not necessarily identical in terms of the network that they encode.

3. Experiments

3.1. Image Data

We use four 3-D in-vivo µMRA images of the mouse brain, each of size $248\, \text{px} \times 248\, \text{px} \times 109\, \text{px}$ with an isotropic voxel spacing of $60\, \mu\text{m}$, and a microcomputed tomography (µCT) of a corrosion cast from the cerebral vasculature
Figure 4: (a) Example slice of a whole-brain \(\mu \text{MRA} \) dataset, (b) Central slice of the corrosion cast \(\mu \text{CT} \) with a magnified subregion (right). All images are gray-scale inverted and the blue scalebar is 1 mm.

of a mouse brain with a volume of 2048 px \(\times \) 2048 px \(\times \) 3714 px and a spacing of 2.9 \(\mu \)m. Both image data types are depicted in Fig. 4. All five datasets were acquired from different animals with one acquisition protocol for all \(\mu \text{MRA} \) images. The \(\mu \text{CT} \) is downsampled by a factor of 2 for the subsequent steps.

3.2. Preprocessing: Vessel Segmentation and Graph Construction

We use the described vessel segmentation framework [23, 8] to obtain an initial segmentation and to construct network graphs. Its parameters, such as SFT order and scales as well as RF parameters, are adjusted in a leave-one-out cross-validation using manually annotated ground truth labels. Probability maps \(P(I) \) are binarized for different thresholds \(\theta \) and transformed into network graphs using DOHT as discussed in Sect 2.1. We segment and track vessels in both \(\mu \text{MRA} \) and the \(\mu \text{CT} \) volume. The non-overconnected results, obtained from single thresholds \(\{0.2, 0.5, 0.9\} \), – denoted as alternative below – serve as comparison in the experiments.

3.3. Training: Learning the Geometric Prior from the High Resolution Network

We use the geometrical prior to support bifurcations in our overconnected graph that are valid with respect to their diameter and relative angle, and to remove those that are not. To this end, we learn the relative frequencies
of radii and deviation angles of vessel segments from the high resolution \(\mu \text{CT} \) (see Fig. 5b for observed angles). We find \(p(\gamma_{ij}|\text{continue}, \Theta) \) to be well represented by an exponential distribution (where \(\gamma_{ij} \) is the deviation angle between two continuing vessels), and \(p(\gamma_{ijk}|\text{branch}, \Theta) \) to be well approximated by a multivariate Gaussian (where \(\gamma_{ijk} \) are the three angles of a bifurcation) while \(\Theta \) is the joint set of parameters of the two distribution models. Radius estimates are utilized to determine the main trunk in a bifurcation that serves as the reference for the angles considered here. An illustration of the angles calculated at every possible bifurcation is given in Fig. 3c. Furthermore, we estimate the relative frequencies of the discussed network motifs, \(P(\text{continue}|\Theta) \), \(P(\text{branch}|\Theta) \) and \(P(\text{terminate}|\Theta) \). For this, we take into account that paths in the high-resolution data (\(n \)-times higher spatial resolution) are more frequently sampled due to the higher spatial resolution, while the number of bifurcation points remains constant. Hence, for estimating \(P(\text{continue}|\Theta) \), we normalize the number of points sampled along paths by the resolution ratio \(n \) between high and low resolution datasets. Otherwise, \(P(\text{continue}|\Theta) \) would be strongly overestimated for the low-resolution data. Parameters \(\Theta \) are fitted to the distributions observed in the \(\mu \text{CT} \) using the maximum likelihood estimate. The fitted model is then used to determine weights \(w_{ij} \) and \(w_{ijk} \) as in (18) and (20). Samples of favourable network motifs according to the learned distributions are depicted in red in Fig. 5c.

3.4. Application: Extracting Networks from Low Resolution \(\mu \text{MRA} \) Data

We generate an overconnected graph for each of the \(\mu \text{MRA} \) test sets using the approach described in Sect. 2.1 with multiple thresholds \(\theta_i \in \{0.2, 0.5, 0.9\} \). We select these three thresholds to obtain connections from high-recall (\(\theta = 0.2 \)), high-precision (\(\theta = 0.9 \)) and trade-off (\(\theta = 0.5 \)) binarizations. After optimization (with \(\alpha = 1 \) and a maximal \(\alpha_{\text{max}} = \alpha \to \infty \)), we compare the extracted network (opt) to networks obtained from individual thresholds \(\theta = 0.2, 0.5 \) and 0.9 (alternative).

We present a sensitivity analysis of the \(\alpha \)-parameter of our method in Fig. 6.
Figure 5: (a) Processed network of the corrosion cast \(\mu \text{CT} \) see Fig. 4 for scale. (b) Angle histograms computed on the extracted network of the corrosion cast dataset with inferred distributions (solid). Shown are deviation angles of continuing segments (green), deviation (blue) and inner (red) bifurcation angles (see Fig. 3c). (c) Favourable configurations of bifurcations (red) according to the fitted model of the corrosion cast \(\mu \text{CT} \).
Figure 6: Sensitivity study on the weight parameter α performed on two MRA datasets. The parameter α has a limited impact with respect to the depicted scores. Averages are within 5.13% and 5.45% for relative vessel volume, 222 μm and 256 μm average distance and 51.4% and 51.6% Dice (cf. Fig. 8).

For large values of α, the image evidence is emphasized (the network is still connected), while choosing a small value of α prioritizes geometric weights. Although varying α has limited impact on the scores that we calculate for our test data, it is recommendable for other problems to determine the most suitable α depending on the previously applied processing, namely the segmentation and overconnection stage. If the data to be processed is expected to contain malformations that are known to form atypical bifurcations, then it would not be advisable to choose $\alpha < 1$, unless the prior model had been adapted accordingly. In the following experiments, we will set $\alpha = 1$ per default and compute results with α_{max} – i.e. maximum emphasis on the image evidence term – for comparison.

Figure 7a shows an optimized network, while Fig. 7b-c provides close-up views before and after optimization, respectively. A number of spurious sprouts and loops are visible that are removed during the process. Details in Fig. 7d-g show differences between the two thresholded and an optimized network. We find that both thresholded networks (Fig. 7b-f) lose the connection of the large branch (center to top-right), while it is retained in the optimized network (Fig. 7g).

Figure 8 reports quantitative measures of global network properties, such
as relative vessel volume, average distance to the next vessel (i.e. extravascular
distance) and Dice score. We calculate both relative vessel volume and the
extravascular distance over a manually annotated brain mask of 360 mm3. In
order to compute Dice scores, we rasterize the networks using a tubular model
of circular shape and compare them with voxel-grained annotations that were
obtained manually on a set of selected slices along each direction. As a conse-
quence of this rasterization, inaccuracies on the voxel level are introduced that
negatively affect absolute values of the Dice score, which is already very sensitive
for thin structures such as vessels. Note, however, that all compared strategies
are affected by this to the same degree. We find the optimized network (opt,
$\alpha = 1$) to always group with the more favourable of the alternative, which is a
low vessel volume, a moderate, i.e. neither too small nor too large, extravas-
cular distance and a high Dice score, while each of the alternative approaches
provides poor results in at least one of these scores. The relative vessel volumes
vary between 5.2\% and 6.5\% for our datasets, while [27] reported values from
3.6\% to 4.2\% and also observed some inter-subject variability. Comparing the
result of our optimization with parameter $\alpha = 1$ and the maximal choice of
α_{max}, we observe that both relative vessel volume and Dice score vary only
slightly, while the average distance increases when using α_{max}, hence resulting
in networks with a decreased vascular density. While the results support the as-
sumption that combining image evidence with geometric prior benefits network
extraction, it will require analysis on more extensive databases to quantify the
methods robustness in presence of specific pathologies and malformations.

Comparing the processing time of the proposed solver (Sect. 2.2.6) and a
standard method (IBM ILOG CPLEX V12.51 [28]) as reported in Table 1 we
find that our approach of handling subproblems during the optimization leads
to an improvement: runtimes (one run each, on a quadcore CPU, 32 GB RAM)
were shorter in three out of four cases, whereas the standard method took
between 44\% and 107\% longer. We find that absolute run times may vary
widely depending on the size of the overconnected graph and its connectedness
as well as parametrization due to the dynamic processing scheme. For those
Table 1: Runtimes in minutes on different µMRA datasets for our proposed solving scheme (t_{ilpcc}) and an off-the-shelf solver (t_{cplex}). We observe that our method is faster as the off-the-shelf solver in the majority of cases.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># 1</th>
<th># 2</th>
<th># 3</th>
<th># 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{ilpcc}</td>
<td>2060.6</td>
<td>186.0</td>
<td>18.6</td>
<td>8.8</td>
</tr>
<tr>
<td>t_{cplex}</td>
<td>2958.6</td>
<td>385.0</td>
<td>31.6</td>
<td>8.7</td>
</tr>
<tr>
<td>t_{cplex} - t_{ilpcc}</td>
<td>0.44</td>
<td>1.07</td>
<td>0.70</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

two datasets that run much longer (# 1 and # 2), we observe that the number of removed segments is two to three times higher than for the two others, while the resulting, optimized networks describe all a very similar vascular volume (as seen in Fig. S). We attribute this to a situation where the overconnection scheme is not as efficient as for the two latter datasets and a high number of connections has to be discarded in the regularization. The relative runtimes indicate that the approach of partitioning the ILP into independent subproblems yields larger gains on datasets which required more iterations in the constraint generation, i.e. had longer absolute runtimes.

4. Conclusions

We have introduced a probabilistic approach for extracting vessel networks and we can compute the MAP estimate efficiently by solving an ILP. We learned physiological-geometric properties considered in the probabilistic model from a high-resolution corrosion cast µCT of a murine cerebrovascular network and applied it to low-resolution, in-vivo µMRA images, leading to superior extracted networks in terms of macroscopic measures.

Our method can be applied as post-processing step to existing vessel segmentation pipelines in order to incorporate physiological knowledge for improved

\footnote{A version of our optimization code will become available from: \url{http://ibbm.in.tum.de/software}}
Figure 7: Visualisation of the results. (a) Rendered vascular network extracted with our method (opt, \(\alpha = 1 \)) (b) Detail view before and (c) after optimization. Colours change with vessel diameter. (d) Raw image. (e) Rasterized DOHT network \(\theta = 0.5 \) and (f) with \(\theta = 0.9 \). (g) Postprocessed network with our method. Note that for the rasterization, a simple tube model is used and therefore, not a perfect voxel-grained segmentation is to be expected but rather a qualitative visualization that indicates whether or not a structure is present in the network model (shown as red overlay).
network extraction. As such, it can be combined with other graph generation methods that are potentially able to overconnect the graph, such as discussed in [15, 16]. It can be used with any other geometrical-physiological prior knowledge about properties, for example considering vessel shape, length, curvature and flow direction, or a non-parametric learning as in [14]. Even a spatially-variant prior could be designed and incorporated to address different vascular properties in certain areas, similar to the parametric maps used for latent classes in [29, 30]. Furthermore, higher-order network motifs that occur frequently in vasculature could be included into the prior model in the same way as bifurcations. It should be noted, however, that increasing the complexity of the prior model would likely require a larger database for training.

For future studies, it would be interesting to assess the robustness of the approach with respect to specific pathologies and abnormalities in the vascular network. Another direction could be the extension of the algorithm to jointly
infer a subject-specific parametrization of the physiological model and predict the underlying network.

Acknowledgements.

This research was supported by the Technische Universität München - Institute for Advanced Study (funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement n 291763, the Marie Curie COFUND program of the the European Union), by grants from the EMDO foundation, Swiss National Science Foundation grant 136822, and the Swiss National Center of Competence in Research on Computer Aided and Image Guided Medical Interventions (NCCR Co-Me) supported by the Swiss National Science Foundation. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Appendix

In Sect. 2.2.2, we found that the MAP estimate x^* is given by
\[
x^* = \arg \max_{x \in \Omega} P(X = x | I, G).
\] (31)

Here, we are going to derive the cost function from the definition of the MRF ②. We start by using the definitions of the potential functions $\phi (.)$, ④ to ⑥, in
the logarithm of $P(\mathbf{X} = \mathbf{x}|I, G)$:

$$
\log P(\mathbf{X} = \mathbf{x}|I, G) \propto \alpha \sum_{x_i \in X} \log \left(P(x_i = 1|I_i, E_i) x_i P(x_i = 0|I_i, E_i)^{1-x_i} \right) + \sum_{\substack{x_i, x_j \in X: \ v_i, \ v_j \text{ adjacent}}} \log \left(\frac{P_{C,ij} P_T}{P_{B,ijk}} \right)
$$

$$
+ \sum_{\substack{x_i, x_j, x_k \in X: \ v_i, \ v_j, \ v_k \text{ adjacent}}} \log \left(\frac{P_{B,ijk}^2}{\prod_{(i', j') \in S} P_{C,ij'}} \right) + \sum_{\substack{x_i, x_j, x_k \in X: \ v_i, \ v_j, \ v_k \text{ adjacent}}} \left(x_i x_j x_k \log \frac{P_{C,ijk} p_T}{p_T} \right)
$$

(32)

where we applied multilinear representations for pseudo-boolean functions and S is the set of pairs out of $\{i, j, k\}$, i.e. $S = 2^{\{i, j, k\}}$. Discarding the constant terms, rearranging the pairwise terms originating from the ternary potentials and merging them with the uniquely pairwise terms – which generates per definition no doubles – then leads to

$$
\log P(\mathbf{X} = \mathbf{x}|I, G) \propto \alpha \sum_{x_i \in X} x_i \log \frac{P(x_i = 1|I_i, E_i)}{P(x_i = 0|I_i, E_i)} + \sum_{\substack{x_i, x_j \in X: \ v_i, \ v_j \text{ adjacent}}} x_i x_j \log \frac{P_{C,ij}}{p_T}
$$

(33)

$$
+ \sum_{\substack{x_i, x_j, x_k \in X: \ v_i, \ v_j, \ v_k \text{ adjacent}}} \frac{P_{B,ijk}^2}{P_{C,ij} P_{C,ik} P_{C,jk}} \log \frac{P_{C,ijk} p_T}{p_T}.
$$

(34)

(35)
Finally, taking the negative logarithm turns the maximization into a minimization:

\[
\mathbf{x^*} = \arg \min_{\mathbf{x} \in \Omega} -\log P(\mathbf{X} = \mathbf{x} | I, G)
\]

\[
= \arg \min_{\mathbf{x} \in \Omega} \alpha \sum_{x_i \in X} -\log \frac{P(x_i = 1 | I_i, E_i)}{P(x_i = 0 | I_i, E_i)} x_i + \sum_{x_i, x_j \in X, e_i, e_j \text{ adjacent}} -\log \frac{p_{C,ij}}{p_T} x_i x_j
\]

\[
+ \sum_{x_i, x_j, x_k \in X, e_i, e_j, e_k \text{ adjacent}} -\log \frac{p_{B,ijk}p_T^2}{p_{C,ij}p_{C,ik}p_{C,jk}} x_i x_j x_k ,
\]

which is equivalent to the integer program:

\[
\min_{\mathbf{x}} \quad J(\mathbf{x}) = \alpha \sum_{x_i \in X} w_i x_i + \sum_{x_i, x_j \in X, e_i, e_j \text{ adjacent}} w_{ij} x_i x_j + \sum_{x_i, x_j, x_k \in X, e_i, e_j, e_k \text{ adjacent}} w_{ijk} x_i x_j x_k ,
\]

s.t. \[A\mathbf{x} \geq \mathbf{b} , \]

\[
x_i \in \{0, 1\} \quad \forall x_i \in X ,
\]

with the weights given as:

\[
w_i = -\log \frac{P(x_i = 1 | I_i, E_i)}{P(x_i = 0 | I_i, E_i)} , \]

\[
w_{ij} = -\log \frac{p_{C,ij}}{p_T} , \]

\[
w_{ijk} = -\log \frac{p_{B,ijk}p_T^2}{p_{C,ij}p_{C,ik}p_{C,jk}} .
\]

References

ssel, M. Rudin, Contrast-enhanced magnetic resonance microangiography
reveals remodeling of the cerebral microvasculature in transgenic Arc\(\Lambda\)β

C. Belden, M. N. Sabbagh, T. G. Beach, A. E. Roher, Morphological
and pathological evolution of the brain microcirculation in aging and

