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Abstract

Very recent Galliani et al. [13] proposed a method using
a very deep CNN architecture for learned spectral recon-
struction and showed large improvements over the recent
sparse coding method of Arad et al. [6]. In this paper we
defend the shallow learned spectral reconstruction meth-
ods by: (i) first, reimplementing Arad and showing that it
can achieve significantly better results than those originally
reported; (ii) second, introducing a novel shallow method
based on A+ of Timofte et al. [33] from super-resolution
that substantially improves over Arad and, moreover, pro-
vides comparable performance to Galliani’s very deep CNN
method on three standard benchmarks (ICVL, CAVE, and
NUS); and (iii) finally, arguing that the train and runtime
efficiency as well as the clear relation between its parame-
ters and the achieved performance makes from our shallow
A+ a strong baseline for further research in learned spec-
tral reconstruction from RGB images. Moreover, our shal-
low A+ (as well as Arad) requires and uses significantly
smaller train data than Galliani (and generally the CNN
approaches), is robust to overfitting and is easily deploy-
able by fast training to newer cameras.

1. Introduction
Nowadays there is an ever-increasing variety of visual

sensors used for image analysis. This enables devices to
collect immense amounts of information from the environ-
ment. However, most cameras can only record a limited
amount of information from the visible spectrum, often con-
taining the standard RGB (red, green, blue) wavelength val-
ues matching the trichromaticity from the human visual sys-
tem. This is caused mainly by the need to keep the costs of
such sensors low and to achieve higher spatial resolution, in
contrast to the hyperspectral cameras. For a given budget
there is a trade-off between having high spectral and high
spatial resolution for the camera captured imagery.

Capturing visual data with a camera with higher spectral
resolution has been proven very useful in many areas, as for

example in medical diagnosis [29, 12, 25], image segmen-
tation [30, 10], modeling of computer generated imagery or
general remote sensing tasks [16, 14, 8, 20, 7]. Unfortu-
nately, there is often the decision whether to use a very high
spectral or spatial resolution and this generally boils down
to the (cheaper) latter one.
But since most of the resulting radiance of high spectral res-
olution images are a composition of the illumination and
reflectance of the occurring materials in the image, it is rea-
sonable to believe that only a small amount of different fac-
tors have an impact on a single pixel. This means that the
RGB values and their corresponding hyperspectral radiance
should be highly correlated [2, 11].

Only a reduced number of works (such as [21, 27, 39, 3,
1, 19, 22, 26, 35, 6, 13]) tried to infer a (full) hyperspec-
tral image from its RGB image(s). Among them, Arad et
al. [6] used high quality hyperspectral image priors to build
a sparse dictionary of corresponding high (full spectrum)
and low spectral (RGB) resolution pixels. In particular, the
orthogonal matching pursuit [24] is used to decompose the
input RGB pixels over the corresponding part of the dictio-
nary to impose the decomposition coefficients on the cor-
responding high spectral resolution part and reconstruct the
hyperspectral image. The assumed linearity between low
and high spectral resolution signals is thus leveraged. Sim-
ilar approaches can be found in prior super-resolution liter-
ature [32, 36, 38]. Very recently, Galliani et al. [13] pro-
posed a convolutional neural network (CNN) which used
best practices from the current super resolution and seg-
mentation literature [18, 17, 15, 28, 31] and achieved better
results than Arad et al. .

In this paper we reimplement and push the performance
of Arad et al. method and, furthermore, we propose a new
method to infer a hyperspectral image using a RGB image
motivated by A+, the color single image super resolution
method of Timofte et al. [33, 32, 34], and achieve top ac-
curacies without the need of neural networks. The super-
resolution problem usually works in the spatial domain of
the RGB image and aims at restoring rich details/high fre-
quencies. Clearly, it relates with our problem of recon-
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structing missing wavelengths from the spectrum based on
the known RGB. Of course, non-trivial adaptation to re-
produce a higher spectral resolution instead of recovering
more pixels per image is required in our case. We compute
a sparse dictionary containing the corresponding low and
high spectral resolution atoms, which act as anchor points
for the following computations. Then, for each anchor, we
leverage the local Euclidean linearity of the spectral spaces
to offline compute a projection matrix from RGB to hyper-
spectral image values, by using the nearest neighbors of the
anchor. At runtime, for each RGB pixel there is only a near-
est anchor search involved, followed by a projection to the
hyperspectral values using the corresponding stored matrix.
As shown in our experiments, in addition to the efficiency
and fast runtime, we reach higher accuracies than Arad et
al. [6], and comparable results to the very recent deep CNN
approach of Galliani et al. [13].

Our main contributions are threefold:

(i) we efficiently improve the approach of Arad et al. [6]
for better accuracy and runtime;

(ii) we propose a shallow A+ [33]-based method for spec-
tral reconstruction;

(iii) we make a stand in defense of the efficient shallow
models by achieving state-of-the-art performance.

This work sets strong shallow baselines for the future re-
search in learned spectral reconstruction from RGB images.
Deep end-to-end (CNN) models will likely benefit from the
increased availability of train data to further push the per-
formance, as happened in the super-resolution field [31].

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related works focusing on Arad et al. [6].
Section 3 proposes a novel method for spectral reconstruc-
tion based on A+ super-resolution method of Timofte et al.
[33]. Section 4 describes the experiments, studies parame-
ters and design choices, and compares in accuracy and run-
time with the current state-of-the-art methods. Section 5
draws the conclusions.

2. Related Work
We briefly review the method of Arad et al. [6] (see

Fig. 1) based on the work of Zeyde et al. [38]. Arad et
al. use a collection of hyperspectral signatures as a train-
ing prior to build an overcomplete dictionary withm hyper-
spectral signature atoms hi via K-SVD [4]:

DH = fh1;h2; : : : ;hmg; hi 2 Rq (1)

such that each training hyperspectral signature can be ap-
proximated by a sparse linear combination over the dic-
tionary atoms as obtained via orthogonal matching pursuit
(OMP) [24]. These atoms are then projected to the lower

Figure 1. Training and reconstruction phases of the multichannel
image restoration method by Arad et al. [6]

spectral resolution (LSR) space li 2 Rp (i.e., the RGB
space), applying the appropriate camera sensitivity function
M(hi), such that it matches the sensors used to capture the
sample for reconstruction. To later map the RGB sample
to the higher spectral resolution (HSR) space, one needs to
keep the correspondence between both dictionary atoms.

DL = R �DH = fl1; l2; : : : ; lmg; li 2 Rp (2)

With the trained dictionaries it is possible to estimate the hy-
perspectral intensities from an RGB image, by first linearly
decomposing each pixel pL = (ri; gi; bi) from RGB via
OMP over DL and then using the computed decomposition
coefficients w to approximately reconstruct the correspond-
ing HSR pixel pH :

DL �w = pL ) pH = DH �w (3)

The mapping of RGB values to the whole spectral space
is severely underconstraint. Usually, there are a finite, low
number of spectral wavelengths of interest. Arad et al. [6]
consider 31 different wavelengths from the visible spectrum
for reconstruction. The frequency of relative metameric
pairs in this lower dimensional manifold needs to be low
as well, which is the case in the visible spectrum used here,
as further explained in [5, 23].

3. Proposed method
Our method (see Fig. 2) departs from the method of

Arad et al. [6] and builds upon the A+ method of Timo-
fte et al. [33, 32, 34] introduced for single image super-
resolution. In our case, a hyperspectral, overcomplete
sparse dictionary representation, trained with K-SVD and
using OMP coefficients, is employed. The dictionary is
then projected to a lower spectral resolution (RGB). In con-
trast to Arad’s method, the color matching function, used
for projecting the training HSR data to a LSR space, needs
to be determined at training time, since the matrices are
computed using both, RGB and hyperspectral atoms and not
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Figure 2. Training and reconstruction phases of our A+ multichan-
nel image restoration method.

only the latter. Most neighbor embedding methods [6, 32]
try to extract a linear combination of training samples to
represent the low spectral resolution signature, followed
by a reconstruction in the hyperspectral space, using the
same coef�cients. This computation can be moved into
the training phase, as explained below. For each dictionary
atom/anchorl i , we minimize the least squares error of the
linear combination of its nearest neighbors (N L ) from all
available training data toyL :

arg min
�

jj yL � N L � jj2
2 + � jj � jj2

2 (4)

where� regularization stabilizes the closed form solution:

� = ( N T
L N L + � I ) � 1N T

L � yL (5)

As a result of applying the same assumptions as described
in Section 2, it is possible to get a linearized projection ma-
trix for the neighborhood samples of each corresponding
dictionary atom from the LSR space (RGB) to a HSR with
the same coef�cients� .

yH = N H � (6)

P i = N H (N T
L N L + � I ) � 1N T

L (7)

yH = P i � yL (8)

whereN H are the corresponding HSR neighborhood sam-
ples toN L for an anchorl i . After of�ine computing and
storing all the projection matricesP i , at runtime the RGB
samples can be embedded into the hyperspectral space us-
ing the projection of the nearest dictionary atom. For a
more in-depth explanation we refer the interested reader
to [33, 32].

We keep the name A+ since our proposed approach can
be seen as the A+ method of Timofteet al. [33] adapted to
the spectral reconstruction domain. In contrast with Tim-
ofte et al. [33] we work directly with pixel values and
not with gradient responses (patch features) and residuals.
Moreover, we regress from RGB values to multiple spectral
values instead of regressing from low frequencies to high
frequencies patches. In contrast with Aradet al. [6], in-
stead of online computing OMP coef�cients over the dic-
tionary to impose in the hyperspectral space reconstruction,
we learn of�ine anchored regressors from the low to the
high spectral spaces using the pool of train samples.

3.1. Implementation

For the proposed method, as shown in Fig. 2, we �rst
train an overcomplete dictionary with K-SVD (using OMP
decomposition coef�cients) and the hyperspectral priors.
Then we obtain a normalized dictionary, containing the
atoms to represent the hyperspectral signal with a linear
combination of those anchor points. In the next step, the
collection of atoms and the training data are projected to
the desired lower dimensional spectral manifold. We use
the CIE 1964 color matching function, which embeds the
HSR sample into the RGB space. In Fig. 7 one can see the
qualitative plot for the weights used to imitate the camera's
sensitivity function, to project the pixels to LSR space.

Having these projections, they are normalized and used
to extract thec nearest neighbors of the training signatures
for each dictionary atom. The next step is to take the un-
normalized neighbors for the atoms and use equation (7) to
compute the embedding matrices.

After that, the nearest dictionary atom is selected for
each RGB image pixel and we multiply it with the corre-
sponding stored projection matrix. The simplicity of the
reconstruction phase leads to a relatively ef�cient recon-
struction. As shown in Table 2, even with an unoptimized
Matlab implementation and using only an average proces-
sor core and no parallel implementation, the runtime is very
ef�cient compared to other methods.

4. Experiments

In this section we describe the experimental benchmark,
then analyze the major parameters of our methods1 and

1Our codes, trained models, and results are available at:
http://www.vision.ee.ethz.ch/ ˜ timofter/

3



Arad

Ours

GT
410nm 500nm 580nm 410nm 500nm 580nm

Figure 3. Visual comparison of Arad (our implementation) vs. our method based on A+ for three wavelengths on crops from an ICVL
image. For reference we show also the ground truth and vizualize the pixel errors. Best zoomed on screen.

their impact on the achieved performance. In the end, we
directly compare with current state-of-the-art methods.

4.1. Hyperspectral Image Databases

We evaluate our methods on three public benchmarks.
ICVL dataset [6] was recently released by Aradet al.
, together with their method for sparse recovery of hy-
perspectral signal from natural RGB images. The dataset
consists of200 images collected by line scanner camera
(Specim PS Kappa DX4 hyperspectral), which captures pic-
tures at a spatial resolution of1392� 1300over519spectral
bands/wavelengths between400and1000nm. To facilitate
the use of these pictures they were downsampled to a spec-
tral resolution of31 channels from400 to 700nm at10nm
increments.

The amount of ICVL data is relatively large in compar-
ison with other databases [22, 37, 11, 9] and is therefore
well suited to analyze different parameters and techniques
for our method before cross validating the �nal approach on
other data sets.

To train a dictionary, a global training and test split was
prepared. For that, the images of all the different environ-
mental settings were evenly distributed into two sets to then
randomly sample a certain amount of pixels from every pic-
ture in the database. With these pixels one can train two
distinct dictionaries and later evaluate the performance by
using all images of the remaining set not used for dictionary
training. This is different to the original method of Aradet
al. as they took for each testing image1000samples from
each of the remaining images for training.

CAVE [37] database consists of 32 different images, with a
spatial resolution of512� 512 pixels, also at31 different
spectral bands between400and700nm, shot with a cooled
CCD camera (Apogee Alta U260). It is a diverse collec-
tion of objects, containing faces, fake and real fruits, candy,
paint, textiles and a lot more.

Because of the small number of pictures, we used a 4
fold crossvalidation, dividing the set into four groups.24
images are then used to train the model, while the remaining
8 can be fed into the model to evaluate it. The different
scenes were distributed as evenly as possible.
NUS [22]dataset contains 66 spectral images and their cor-
responding illuminations between400to 700nm, and10nm
increments. The pictures were taken with a Specim's PFD-
CL-65-V10E spectral camera. Different illumination condi-
tions were used, considering natural sunlight, arti�cial wide
band lights using metal halide lamps and a commercial off-
the-shelf LED [22].

We used the default training-test split of the database,
with 25 images for testing and 41 for training.

4.2. Compared methods

Arad [6] method described in Section 2 uses a collection of
hyperspectral signatures as a training prior to build an over-
complete dictionary with K-SVD [4] and OMP [24]. Hav-
ing computed the atoms for the collection, it is projected to
the RGB space and used to represent low spectral resolution
samples with a linear combination of atoms. The sparse set
of OMP weights can be applied to the hyperspectral dictio-
nary atoms to reconstruct the �nal spectral signature.
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Figure 4. Visual comparison of Arad (our implementation) vs. our method based on A+ for three wavelengths on crops from a CAVE
image. For reference we show also the ground truth(GT) and vizualize the pixel errors. Best zoomed on screen.

Aradet al. proposed to use a dictionary size ofm = 512
and a sparsity ofk = 28. For each test image a new model
is trained using1000samples from each remaining image
of the dataset.

Galliani [13] approach used a deep convolutional neural
network as a model inspired by current semantic segmen-
tation architecture Tiramisu of Jegouet al. [18]. An end-
to-end mapping of the complete image from RGB to hy-
perspectral values is trained. The network �rst uses several
densely connected convolutional layers with max pooling
to subsequently scale the input down and extract important
information. To recover the whole HSR image from learned
features, subpixel upsampling is then used as proposed by
Shi et al. [28]. The layers are interconnected to speed up
the learning and reduce the vanishing gradient problem.

Nguyen [22]model is based on a learned mapping between
hyperspectral response and their corresponding RGB values
for a given camera sensitivity mapping. It uses a non-linear
mapping, applying a radial basis function network. Addi-
tionally, the input data is processed with a white balancing
step to reduce the effect of different illumination conditions
on the mapping from RGB to hyperspectral re�ectance.

Arad (ours) Our implementation of Arad's method has im-
proved results as shown in Table 1. This can be explained
by the fact that we used more training samples for the train-
ing of the dictionary and because we adopted a global train
and test split, instead of a split for every single image. This
resulted in300000training samples instead of only200000.
Besides these changes, the remaining parameters stayed the
same.

A+ (ours) For our approach we use a pretrained overcom-
plete dictionary, not as proposed by Arad for a superposition
but as anchor points to perform a nearest neighbor search. A
projection matrix is (of�ine) computed for each anchor, us-
ing a collection of neighboring samples from the complete
training set to approximate a local mapping from RGB to
hyperspectral values. The method is described in Section 3.

4.3. Quantitative measures

Root-mean-square error (RMSE) is a standard quantita-
tive measure for accuracy. Aradet al. [6] and Gallianiet
al. [13] used the absolute and relative RMSE and in order
to facilitate direct comparison we use them both.

RMSE The absolute RMSE is computed over8 bit inten-
sity pixel values. Equation (9) shows the formula used by
Aradet al. , while equation (10) by Gallianiet al. . I ( i )

E and
I ( i )

G represents thei th element of the estimated or ground
truth image andn are the number of pixels.

RMSE =
1
n

nX

i =1

q
(I ( i )

E � I ( i )
G )2 (9)

RMSE G =

vu
u
t 1

n

nX

i =1

(I ( i )
E � I ( i )

G )2 (10)

rRMSE Arad et al. compute the relative RMSE by divid-
ing the luminance error by the ground truth luminance, thus
preventing a bias towards low errors in low luminance pix-
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Figure 5. (a) In�uence of the cluster size c (used for the computation of the projection matrices) on the accuracy, using� = 0 :1; k = 28
(At the top left). (b) In�uence of the dictionary size c (number of atoms) on the accuracy, using� = 0 :1; k = 28 (At the top right).
(c) In�uence of the cluster sizec and preprocessing on training image (no preprocessing or using bicubic interpolation) on the accuracy.
(� = 0 :1; k = 8 ). (d) In�uence of� on the accuracy, usingk = 16 ; c = 4096, (At the bottom left). (e) In�uence of the dictionary sparsity
k on the accuracy, using� = 0 :1, (At the bottom right). (f) Performance of a bigger patch size. Dashed lines represent trained models with
bicubic downsampled training samples, while the continuous line uses unprocessed input data for training.

els as shown in (11). Gallianiet al. take the average of the
ground truth (�I G ) to get the relative RMSE, in (12).

rRMSE =
1
n

nX

i =1

(
q

(I ( i )
E � I ( i )

G )2=I ( i )
G ) (11)

rRMSE G =

vu
u
t 1

n

nX

i =1

(( I ( i )
E � I ( i )

G )=�I G )2 (12)

4.4. Parameters

The main parameters of our method are: dictionary size
(m), cluster size (c), sparsity of the dictionary (k) and � ,
which regularizes the least squares solution for the A+ com-
putation.

To analyze the parameters, we were training our method
on one half of the ICVL images and testing it with the re-
maining ones and vise versa. While evaluating the param-
eters, the training set was built of2000randomly selected
samples (pixels) from each image, resulting in200000fea-
ture vectors, to train the dictionaries. To compute the pro-
jection matrices the same process was used, but with an in-
creased amount of sample pixels per image. This leads to
2000000signatures. More samples does not increase the
matrix computation time as much as for the dictionary train-
ing, while signi�cantly increasing the accuracy.
Neighborhood/cluster size (c) As shown in Fig. 5a the
cluster sizec has a big in�uence on the performance of our

method. One can reduce the needed dictionary size for op-
timal results by using more neighbors for projection ma-
trix computation, which will �nally shorten the reconstruc-
tion time which involves a search over the dictionary atoms.
Larger neighborhoods only increase training time.
regularization (� ) stabilizes the solution and our method
is relatively robust to the selection of� value as seen in
Fig. 5d. We set� to 0.1.
Dictionary size (m) rRMSE improves with the number of
atomsm in the dictionary up to a saturation as shown in
Fig. 5b,c.m affects both training and reconstruction, while
the cluster sizec only the training time. Therefore, it is
bene�cial to use large neighborhoods (c) and medium to
small dictionaries (m).
Dictionary sparsity (k) The sparsity has low impact on the
rRMSE of our method (see Fig. 5e). However, it heavily
impacts the dictionary training as both K-SVD and OMP
employed techniques depend on sparsity.
For later tests, the values for� = 0 :1 andk = 8 are �xed.
Mining of samples The techniques of Aradet al. and Tim-
ofteet al. work mainly due to the (assumed) linearity of the
two spectral spaces in correspondence to each other. By rep-
resenting the space as linear combinations of atoms (Arad)
and as a linear projection in the case of A+ (Timofte), there
already occurs smoothing by a certain degree. Often when
linearizing a function, this can have a stabilizing effect on
the results. Thus, it is important to verify whether it is pos-
sible to reduce the impact of noise on the training data even
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