Abstract

This paper describes ASAL, a new active learning strategy that uses uncertainty sampling, adversarial sample generation and sample matching. Compared to traditional pool-based uncertainty sampling strategies, ASAL synthesizes uncertain samples instead of performing an exhaustive search in each active learning cycle. Then, the sample matching efficiently selects similar samples from the pool. We present a comprehensive set of experiments on MNIST and CIFAR-10 and show that ASAL outperforms similar methods and clearly exceeds passive learning. To the best of our knowledge this is the first pool-based adversarial active learning technique and the first that is applied for multi-label classification using deep convolutional classifiers.

1. Introduction

Active learning defines a strategy determining data samples that, when added to the training set, improve a previously trained model most effectively. Thus, the main issues in active learning are designing a measure to identify valuable samples and to define a domain or set where to scan for possible candidates.

Often, an uncertainty score assesses the effectiveness of a sample for a given classifier. Simply speaking, the heuristic is: adding a sample for which the current classifier is uncertain improves the overall performance whereas adding certain samples leads to a marginal enhancement. To find new samples, pool-based methods search in a predefined data set, whereas query-synthesis methods generate new samples and stream-based methods decide for each instance in a stream whether to request an annotation or not.

Recent progress in generative models capturing data distributions facilitates generating artificial samples of sound quality [6,8,19,20]. Combining these models with uncertainty sampling enables generating adversarial samples for a given classifier [28]. Retrieving a close match of the generated sample from a data base transforms the query-synthesis scenario to pool-based active learning. Generating samples followed by selecting matches from the pool eliminates the disadvantageous exhaustive search of pool-based methods using uncertainty sampling [22,26].

1.1. Contribution

Our proposed method Adversarial Sampling for Active Learning (ASAL) combines three ingredients for efficient pool-based active learning: uncertainty sampling, adversarial sample generation using Generative Adversarial Networks (GANs) and sample matching. We show that ASAL outperforms recent methods employing GANs and achieves better performance than passive learning i.e. randomly selecting samples from the pool. Our method suffers less from sampling-bias than [28]. To the best of our knowledge, we are the first employing GANs in active learning for more than two classes in order to train deep networks.

We introduce the different strategies used for uncertainty sampling in Sec. 3.1 and explain the proposed method ASAL in Sec. 3.2. We present a comprehensive set of experiments using two different data sets in Sec. 4.

2. Related Work

Active learning aims to train a classifier as effectively as possible while requiring a minimal amount of annotated samples. The task can be seen as an interaction of two different models: the selector chooses and presents new samples to the learner. In each active learning cycle the learner is trained on the current samples and the selector tries to identify samples that improve the quality of the learner most effectively. First, the learner is trained on an initial data set. Second, the selector determines new samples based on the trained learner and requests the corresponding labels before adding them to the aforementioned data set. This concludes one active learning cycle. In the next cycle the learner is updated using the newly added samples instead of the initial data set only. This procedure continues until a predefined stopping criteria is met, e.g. a fixed budget of samples is exceeded.

Two different strategies are most common to identify
uncertain samples: small distance to the separating hyperplane or high entropy. Again, the heuristic is, that adding samples that are in the vicinity of the decision boundary or lead to a high entropy of the classifier are more likely to improve its quality. Typical settings for the minimum distance criterion include Support Vector Machines (SVMs) [22] [4, 11, 28]. Jain et al. [11] propose a hashing-based strategy that avoids exhaustive search to select data samples close to the hyper-plane.

The entropy is maximal for a given classifier when the probabilities corresponding to the different classes are equally distributed. Maximum entropy sampling is common for multi-label classification problems [12, 27] or when using the cross entropy loss for training [26]. Among these uncertainty sampling strategies there are others that use the structure of the data distribution [29, 17], a diversity measure [25] or combine multiple ideas [27].

In active learning there are mainly three different approaches defining different sample domains: stream-based, query-synthesis and pool-based. In stream-based active learning the selector usually observes one unlabeled sample from a continuous stream each cycle and has to decide whether to request the label or not [5, 3]. In query-synthesis, a model generates artificial samples whenever needed [28]. Furthermore, the most widely used approach is pool-based active learning [11, 9, 12, 26, 17, 27]. It is popular, because for many problems a pool of unlabeled samples is available beforehand. Then, the selector needs to choose samples from the data base that will be annotated and added to the training set.

In our work we present a pool-based active learning strategy using uncertainty sampling. However, our model synthesizes uncertain samples and efficiently selects similar samples from the pool. Mixing these two strategy allows fast sample retrieval but ensures real samples where confidence annotations are possible. Thus, the most similar work to ours is [28]. However, they directly label the generated samples and use the distance to the decision boundary to assess the uncertainty. The method proposed in [11] and ASAL tackle the same problem of accelerating the retrieval of uncertain samples from a pool. However, the hashing based approach from [11] is very different from our synthesis idea.

3. Active Learning Methods

In pool-based active learning a selector chooses samples from the pool and requests the corresponding labels. A common criterion to assess the sample value is uncertainty. However, pool-based uncertainty sampling requires an exhaustive search over the whole data set every active learning cycle. Instead of recomputing the uncertainty score for each sample in every cycle our method uses generative models to synthesize adversarial samples for the current classifier.

Instead of directly labeling these (synthetic) samples, the method selects close (real) samples from the pool.

In this section we will describe the two popular active learning strategies using uncertainty sampling and introduce the three ingredients that when combined together build our proposed method: Uncertainty sampling, adversarial sampling, and sample matching.

In the remainder of the paper we use the following notation: The set describing the pool is denoted by \mathcal{P}, the classifier at active learning cycle k is denoted by $\theta(k)$ and the set of possible label categories by \mathcal{C}.

3.1. Uncertainty sampling

Pool-based uncertainty sampling requires recomputing the uncertainty score every active learning cycle for each sample. This strategy always retrieves the most uncertain samples. In the scenario where the learner is a SVM, uncertain samples lie in the vicinity of the separating hyperplane. Thus, newly added samples are ideally support vectors and improve the decision boundary. The sampling policy for binary classification on the Pool \mathcal{P} reads as:

$$x_{\text{new}} := \arg\min_{x \in \mathcal{P}} \| W_{\theta(k)} \phi(x) + b \|_2,$$ \hspace{1cm} (1)

where $\phi(\cdot)$ is the feature map, e.g. induced by a SVM kernel or a neural network. Another metric is information entropy that directly measures the information of a given sample for the current classifier. Information entropy reads as:

$$H(x) := - \sum_{c \in \mathcal{C}} p(c|x) \log (p(c|x)) .$$ \hspace{1cm} (2)

The entropy is minimal if the classifier is certain about the prediction, i.e. the probability is one for one class and zero for all other classes. Furthermore, the information content in a sample is maximal if the classifier probability is equal for all classes, i.e. $p(c|x) = 1/|\mathcal{C}|$, where $|\mathcal{C}|$ is the cardinality of the set. The sampling strategy using the maximum entropy criteria reads as:

$$x_{\text{new}} := \arg\max_{x \in \mathcal{P}} H(x, \theta(k))$$

$$= \arg\min_{x \in \mathcal{P}} \sum_{c \in \mathcal{C}} p_{\theta(k)}(c|x) \log (p_{\theta(k)}(c|x)) .$$ \hspace{1cm} (3)

Typical problems of aggressive uncertainty sampling are suffering by sampling-bias and computationally extensive updates in each active learning cycle.

3.2. Proposed Adversarial Sampling for Active Learning (ASAL)

3.2.1 Adversarial Sample Generation using GANs

Generative models enable approximating an underlying data distribution using unlabeled data samples. A discrim-
Instead of directly optimizing for the sample problem leading to a solution space with simpler structure. Uncertainty sampling strategies modifies the optimization normally distributed and R put domain the generator produces the mapping G are indistinguishable from real samples. At convergence, the Evidence for different classes might lead to sampling-bias [28, 5]. Therefore, labeling and training on real samples is advantageous. A matching strategy helps to find samples similar to the generated ones in the pool, simplifying the labeling task and avoiding sampling-bias.

3.2.2 Sample Matching

We introduce a matching algorithm that selects a sample from the pool for a presented generated sample. Such an algorithm needs a set of distinct features characterizing the different samples and a metric to compute the distance based on these features. We use nearest neighbor to search for the closest matches using the Euclidean distance. We limit the number of dimension of the feature space to 50 using Principal Component Analysis (PCA) [18] to achieve a similar performance for all strategies and to guarantee an efficient nearest neighbor search. For large data sets the exact nearest neighbor search should be replaced by an approximate search, e.g. using LSH-forest [2].

The simplest matching uses directly the raw data components, i.e. the gray-scale or rgb pixel values. The ASAL using rgb or gray-scale feature matching is denoted by ASAL-Gray or ASAL-RGB. The second model ASAL-Autoencoder uses encoder features to compare samples. First, an encoder compresses the input images to a smaller number of features than the number of pixels in the image. Second, a decoder reproduces the input image from the compressed representation. To train the autoencoder, we use the squared difference between the input and the reconstruction. The last strategy ASAL-Discriminator uses features extracted from a GAN discriminator. The discriminator tries to differentiate between real and artificially generated images. Thus, the discriminator learns relevant features for the training data set. We use the inputs of the linear layer producing the final decision as features. Note, that the discriminator and its features change for different GANs employed in ASAL.

The adversarial generation combined with the matching strategy define the proposed ASAL. Adversarial sampling generates uncertain instances for the current classifier while respecting the underlying data distribution. Feature matching enables selecting samples from the pool with similar features than the generated samples. Furthermore, ASAL does not require recomputing the uncertainty score for each sample every active learning cycle and leads to higher efficiency than traditional pool-based uncertainty sampling strategies.

4. Experiments

4.1. Data sets

For the experiments we use two different data set: MNIST [16] and CIFAR-10 [14]. The MNIST data set contains ten different digits 0 to 9 unevenly distributed. Each image has a resolution of 28×28 gray-scale pixels. The data set consists of 50k training, 10k validation and 10k testing samples. The CIFAR-10 data set consists of 50k training and 10k validation 32×32 color images. The ten label categories are uniformly distributed in the training and the validation set. In addition to using the 10 classes in each data set, to directly compare with Zhu et al. [28], we also follow their binary settings and use the MNIST digits 5 and 7 and the CIFAR-10 classes automobile and horse. For additional tests of the MNIST models, we use USPS [15] consisting of 2007 unevenly distributed 16×16 gray-scale test images. We show these results in the appendix.

4.2. Methods

First, we produce the classification accuracy for the fully supervised model. This result serves as a performance reference that an active learning strategy attempts approximating with as few training samples as possible. Furthermore, we use random sampling also called passive learning to estab-
lish a baseline that we want to exceed or at least perform equally. As our strategies are closely related to previous pool-based uncertainty sampling methods we report the results for minimum distance or maximum entropy sampling. To ease the presentation we will refer to these computationally intensive methods in the remainder of the text as aggressive active learning strategies. Compared to these aggressive strategies, our ASAL does not require recomputing the uncertainty score for each sample every active learning cycle but generates and then efficiently selects similar samples from the pool.

We examine the three proposed ASAL strategies: ASAL-Autoencoder, ASAL-Gray/RGB and ASAL-Discriminator for both data sets using two and ten classes. We test for every data set multiple GANs and autoencoders. We always draw samples from the pool without replacement. We do not use data augmentation for any experiment and train all models from scratch for every active learning iteration. We run all experiments for five different runs with different random seeds. The only exception are the computationally demanding experiments on CIFAR-10 with ten classes that we run for three different random seeds. We report the training iterations for the different GANs and data sets in Tab. 1 in the appendix. We use the default values for all other parameters given in the corresponding papers [8, 24] and in the code [7, 23].

4.3. Classification Results on MNIST - two classes

For binary digit classification we train the linear model either with hinge or cross entropy loss depending on the uncertainty criteria. In addition to the data loss, we apply weight decay with a regularization parameter $\lambda = 1/2$. We train the model for 10 epochs using the Adam optimizer [13] with a batch size of 10 and learning rate of 0.001.

For active learning we follow Zhu et al. [28] and start with an initial data set containing 25 samples for each class and increase the data set by 10 samples each active learning cycle. We run our experiments until the data set contains 500 samples instead of 250 or 350. For ASAL we use the Adam optimizer and apply 100 gradient steps to minimize the uncertainty objective with respect to the latent space variable, see Eq. 4 and 5. Note, that we directly optimize for all ten latent space variables at the same time, embedding them in one batch with random initialization. We train a DCGAN [19] and a Wasserstein GAN [1, 8] with gradient penalty to synthesize only the digits 5 and 7. We use the same network architecture for both GANs that is given in the publicly available TensorFlow implementation [7]. The differences are that the DCGAN uses batch normalization [10] and the loss introduced by Goodfellow et al. [6], whereas the Wasserstein GAN [1, 8] uses the Wasserstein loss with gradient penalty.

We report results for three different sample matching: (1) Gray scale pixel values, (2) auto encoder features and (3) GAN discriminator features. We always reduce the number of dimensions to 50 using PCA [18] before fitting the nearest neighbor model. We train a DCGAN [19] and a Wasserstein GAN [1, 8] with gradient penalty to synthesize only the digits 5 and 7. We use the same network architecture for both GANs that is given in the publicly available TensorFlow implementation [7]. The differences are that the DCGAN uses batch normalization [10] and the loss introduced by Goodfellow et al. [6], whereas the Wasserstein GAN [1, 8] uses the Wasserstein loss with gradient penalty.
Figure 2: Test accuracy for different active learning strategies for MNIST - two classes using DCGAN or WGAN-GP.

(a) DCGAN.

(b) WGAN-GP.

Figure 3: Performance comparison between the proposed ASAL and GAAL [28] on MNIST - two classes using DCGAN or WGAN-GP.

Figure 4: Accuracy comparison on MNIST - two classes using DCGAN or WGAN-GP.

4.4. Classification Results on CIFAR-10 - two classes

We reuse the experimental setup presented in Sec. 4.3 for binary classification on CIFAR-10 but change the batch size to 50 and re-scale the RGB pixel values to the unit interval. We run the active learning strategies until the budget of 1000 samples is reached.

For CIFAR-10 we examine each ASAL with three different GANs. We use the DCGAN [19], a Wasserstein
GAN [1,8] with similar architecture and a residual Wasserstein GAN. The Wasserstein GAN is trained using gradient penalty with and without an additional soft-consistency term [24]. We use for all GANs the network architectures and implementations provided by Gulrajani [7] and Wei [23].

The encoder for ASAL-Autoencoder consists of three layers, each with a convolution followed by batch normalization, activation and max pooling with a stride of two and window size 2×2. The number of compressed features is 256. The decoder uses first a layer consisting of a convolution, batch normalization and activation followed by three deconvolution layers each with batch normalization and activation. We train the autoencoder for 100 epochs with a batch size of 128 using the Adam optimizer with a learning rate of 0.001. Fig. 4a shows that ASAL using DCGAN performs at best similarly to random sampling. However, for the Wasserstein GAN, especially the ASAL-Autoencoder exceeds the quality of random sampling. Fig. 4b shows that ASAL-Autoencoder even converges for 1000 labeled samples to the performance of the exhaustive uncertainty sampling and the fully supervised model. Fig. 20 in the appendix shows the same experiments using minimum distance sampling and the previously introduced residual GANs.

4.5. Classification Results on MNIST - ten classes

For ten digit classification we use LeNet [16] with cross entropy. We train the model for 10 epochs using the Adam optimizer with a batch size of 50 and learning rate of 0.001.

For active learning we start with an initial data set containing 10 samples for each class and increase the data set by 50 samples each active learning cycle. We run our experiments until the training set contains 10k samples. For ASAL we use the Adam optimizer and apply 100 gradient steps to minimize the negative entropy with respect to the latent space variable, see Eq. (5). Note, that we directly optimize for all 50 latent space variables at the same time, embedding them in one batch with random initialization. We synthesize samples using a Wasserstein GAN with gradient penalty [8]. We use the architecture and models proposed in the TensorFlow implementation from Gulrajani et al. [7].

We reuse the autoencoder architecture presented in Sec. 4.3 but with three times more channels resulting in 192 features at the output of the encoder. For sample matching we then decrease the number of features to 50 using PCA.

Fig. 5 shows that the proposed ASAL strategies also apply to multiple classes and exceed the quality of passive learning on the test set using WGAN-GP. Fig. 12 in the appendix shows the same experiments when using DCGAN.

Additionally, Fig. 14 reports the label distribution of the data set for each active learning cycle. Summarizing, the random sampling strategy indeed follows the data distribution, whereas the aggressive active learning technique and ASAL clearly favour certain digits among others.

4.6. Classification Results on CIFAR-10 - ten classes

Using all classes of CIFAR-10 complicates the classification task requiring a deep model to achieve close to state-of-the-art results. Therefore, we use the All-CNN model proposed by Springenberg et al. [21] with a reported classification error of 9.08%. We use stochastic gradient de-
scent with constant momentum of 0.9 with a learning rate of 0.01 that we decay by a factor of 10 at the 130th and the 140th epoch. The models are regularized with weight decay with $\lambda = 0.0001$. We train the model for 150 epochs with a batch size of 128 without data augmentation and report a classification error of 11.8%. The All-CNN contains roughly 1.4 million different parameters. Therefore, we require an initial data set containing 100 randomly selected images per class. We add 1000 samples to the data set every active learning iteration until the budget of 30k samples is reached. Because generating all samples at once is unfeasible we generate ten times a batch containing 100 samples.

We report for the residual Wasserstein GAN \cite{golatkar2018does} with gradient penalty trained on CIFAR-10 an Inception score of 7.8. Adding a soft consistency term \cite{achille2018critical} increases the Inception score to 8.3. We use the publicly available TensorFlow implementation from Wei et al. \cite{wei2018active}.

Hence, we include Fig. 6 that shows the results for different ASALs using gradient penalty trained on CIFAR-10 an Inception score of 7.8. Adding a soft consistency term \cite{achille2018critical} increases the Inception score to 8.3. We use the publicly available TensorFlow implementation from Wei et al. \cite{wei2018active}.

Fig. 6 shows that the performance of our ASALs follow random sampling or are slightly worse. However, maximum entropy sampling converges to the quality of the fully supervised model for 3/5 of the training data. We show the label distributions in Figs. \cite{achille2018critical} and \cite{achille2018critical} that reveal that maximum entropy sampling contains most frequently dog exactly one of the classes that are least frequent in most of the ASAL training set.

4.7. Discussion

Our results show that ASAL outperforms previous methods using generative models and random sampling. Nonetheless, the success of our method is tightly coupled with the quality of the GAN and the sample matching. Fig. 5 shows that ASAL efficiently operates on multi-class problems. However, Fig. 6 reveals that ASAL performs slightly worse than passive learning on CIFAR-10 - ten classes. The quality of generated adversarial samples for CIFAR-10 are still not visually appealing and difficult to match, see Figs. \cite{achille2018critical}, \cite{achille2018critical}, \cite{achille2018critical}, and \cite{achille2018critical} in the appendix.

To the best of our knowledge the reported results in this paper are the first that successfully apply GANs to active learning and consistently outperform passive learning.

5. Conclusion

We tackle an important problem in machine learning: Identifying samples, that when added to the training set, effectively improve the quality of a classifier. Our proposed method uses an uncertainty score to select samples from a data pool. Compared to traditional methods, the proposed adversarial sampling strategy leads to a more efficient algorithm while approximating the quality of aggressive active learning techniques. ASAL successfully manages multi-class problems on MNIST and outperforms passive learning and previous methods on the more complex CIFAR-10 data set using two classes. We apply ASAL to the full CIFAR-10 data set using a deep network as classifier but perform slightly worse than random. We show by investigating multiple GANs, that their quality decides about the success of
the proposed method.

Possible extensions of our strategy are training the GAN during active learning in a semi-supervised fashion when more and more labels are available. Taking the discriminator into account while generating new samples could lead to more realistic images. Another idea is to respect the data distribution of the pool or the current training set while generating new samples. Furthermore, new matching strategies might select more effective samples from the pool.

To conclude, we successfully applied generative models to active learning and believe that our work helps to demonstrate the potential of GANs for active learning.

References

A. Additional Results: MNIST - two classes

Figure 7: Test accuracy on MNIST - two classes of a fully supervised model, for random sampling, uncertainty sampling and different ASALs using different GANs, uncertainty measures and loss functions. ASAL with WGAN-GP (bottom) clearly exceed the performance of ASAL using DCGAN (top). Maximum entropy sampling and using the cross entropy loss lead to the setup (7d) that approaches the fully-supervised model with the fewest samples and reaches the smallest gap for all ASAL using 500 labelled samples.
Figure 8: Label distribution for uncertainty sampling using maximal entropy and random sampling for MNIST - two classes using different uncertainty measures and loss functions. The tick on the right show the true label distribution in the pool. The label distribution of the training set, assembled with random sampling (top), converges to the true label distribution of the pool. Conversely, uncertainty sampling leads to a training set that contains more frequently the label 5 than 7 compared to the pool that contains 7 more frequently. Apparently, images with the digit 5 lead to higher uncertainty of the used classifier.
Figure 9: Label distribution for active learning using different matching strategies, uncertainty measures and GANs for MNIST - two classes. The ticks on the right show the true label distribution in the pool. ASAL using WGAN-GP (third and fourth row) leads to a training set that contains almost three times as many images with the digit 7 than digit 5. Most likely, the DCGAN is responsible for this behaviour because we already observed that it produces the digit 7 more frequently than the digit 5, see Fig. 29a.
Figure 10: Average entropy of images that are selected and added to the training set for MNIST - two classes using different GANs, uncertainty measures and loss functions. All figures show that ASAL selects samples from the pool that have a higher entropy than randomly sampled images. However, maximum entropy sampling and WGAN-GP (d) lead to the largest entropy gap between selected and randomly sampled images. Maximum entropy sampling (right column) results in smaller average entropy of the classifier than minimal distance sampling (left column) because we use the cross-entropy loss that directly optimizes for small entropy, opposed to the hinge loss that minimizes the distance to the separating hyper-plane.
A.1. Agreement of Manual Annotations and Matched Labels

Instead of manually annotating images we propose to select similar images from the pool and ask for labels of these images. Similar images might show an object of the same class, have similar surrounding, colors, size or share other features. Thus, we compare the agreement of the manual class annotations of the generated images with the matched images, using the three different strategies. We use 1300 generated samples for each GAN, annotate the images manually and retrieve the closest match with the corresponding label from the pool. We assume that the final model will be measured on an almost evenly distributed test set similar to MNIST and USPS. However, the test set for this experiment contains the generated samples with manual annotations and the GAN may generated unevenly distributed samples. Thus, we compute the accuracy for each class independently and average these values subsequently to obtain the final score.

Fig. 11 shows that the agreement is higher for ASAL strategies using WGAN-GP than DCGAN. Furthermore, we observe that the matching based on gray values achieves the highest agreement. Similarly, Figs. 7a and 7b show best performance for ASAL-Gray.

Figure 11: Comparison of the agreement accuracy between manual annotations and matched labels. The matching strategies employed in ASAL allow to select similar images from the pool and compare these labels to the manual annotations. For MNIST - two classes the agreement for WGAN-GP is higher than for DCGAN.

Table 1: Number of training iterations for the different GANs and data sets.

<table>
<thead>
<tr>
<th>GAN</th>
<th>MNIST</th>
<th>CIFAR-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>two</td>
<td>ten</td>
</tr>
<tr>
<td>DCGAN</td>
<td>40k</td>
<td>100k</td>
</tr>
<tr>
<td>WGAN-GP</td>
<td>40k</td>
<td>100k</td>
</tr>
<tr>
<td>Residual WGAN-GP</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Residual WGAN-CT</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^2\)We observe mode collapse for CIFAR-10 - two classes using DCGAN when training the GAN for more than 100k iterations.
B. Additional Results: MNIST - ten classes

Figure 12: Test accuracy on *MNIST - ten classes* of a fully supervised model, for random sampling, uncertainty sampling and different ASALs using two different GANs. Selecting new images using random samples exceeds the performance of the proposed strategy when using the DCGAN. However, replacing the DCGAN with the WGAN-GP enables outperforming random sampling. ASAL-Discriminator achieves the best quality.

Figure 13: Average entropy of images that are selected and added to the training set for *MNIST - ten classes* using different GANs. Both figures show that at the beginning ASAL selects images with higher entropy than random sampling. In average WGAN-GP leads to a larger gap than DCGAN. However, this gap rapidly shrinks when increasing the training set.
Figure 14: Label distribution for uncertainty sampling using maximum entropy, random sampling and active learning using different matching strategies and GANs for MNIST - ten classes. The tick on the right show the true label distribution in the pool. Note the different scaling of the y-axis. Random sampling converges to the true label distribution in the pool and maximum entropy sampling leads to a training set with a higher ratio of certain digits (7, 8, 9) or lower (0, 1, 4, 6) than the pool. Similarly, ASAL using WGAN-GP (bottom row) selects certain digits more frequently than others. Conversely, ASAL using DCGAN (top row) leads to a training set that contains 30% images with the digit 1. Most likely, the DCGAN is responsible for this behaviour because we already observed that it produces the digit 1 more frequently than any other digit, see Fig. 30a.
C. Training on MNIST and Testing on USPS

Zhu et al. [28] report the accuracy of GAAL when trained on MNIST and tested on USPS for two classes. They report best performance on USPS and outperform the fully supervised model. However, it is unclear how they up-sample the 16×16 USPS images to test on the 28×28 model trained on MNIST. We redo the experiments using ASAL and up-sample the USPS images as follows: (1) padding the images with three pixels at each side, (2) up-sampling the images to 30 and (3) cropping the images to 28×28 to remove boundary artifacts. Following this strategy, we report an average test accuracy of 0.91 for the fully supervised model compared to 0.70 reported by Zhu et al. [28]. Fig. 15 shows that ASAL outperforms aggressive uncertainty and random sampling.

We repeat the experiment for MNIST - ten classes using DCGAN and WGAN-GP. This time, uncertainty sampling clearly outperforms all other strategies and the fully supervised model. Nonetheless, ASAL-Auto and ASAL-Disc lead to a better training performance than passive learning for WGAN-GP.

Figure 15: Test accuracy on USPS - two classes but trained on MNIST - two classes of a fully supervised model, for random sampling, uncertainty sampling and different ASALs using different GANs, uncertainty measures and loss functions. Uncertainty sampling performs worse than any other strategy because it aggressively trains the classifier for the samples present in the pool and generalizes less. Random sampling and ASAL tend to generalize better by respecting the true data distribution either through random sampling or using a pretrained GAN on the data set to find new samples.
Figure 16: Test accuracy on *USPS - ten classes* but trained on *MNIST - ten classes* of a fully supervised model, for random sampling, uncertainty sampling and different ASALs using two different GANs. Maximal entropy sampling for ten classes exceeds the quality of any other method compared to binary classification where it performed worst, see Fig. [15]. The more elaborate LeNet and using more classes and samples to train lead to a classifier that generalizes well. The active learning strategies using WGAN-GP exceed the quality of random sampling. ASAL-Disc. even outperforms the fully supervised mode. ASAL using DCGAN performs comparable to random sampling.

D. Additional Results: CIFAR - two classes

For CIFAR-10, we do not indicate the true label distribution by a tick because the validation set contains the same number of samples for each class.

Figure 17: Label distribution for uncertainty sampling using maximal entropy and random sampling for *CIFAR-10 - two classes* using different uncertainty measures and loss functions. The label distribution of the training set of all strategies converges to the true label distribution of the pool. However, in average over all active learning iterations the training set of the uncertainty sampling strategies most frequently contained the images with the label *horse*.
Figure 18: Label distribution for active learning with minimum distance sample generation and the Hinge loss, using different matching strategies and GANs for CIFAR-10 - two classes. All setups assemble training sets containing the more image with the label horse than automobile.
Figure 19: Label distribution for active learning with maximum entropy sample generation and the cross-entropy loss, using different matching strategies and GANs for CIFAR-10 - two classes.
Figure 20: Validation accuracy on CIFAR-10 - two classes of a fully supervised model, for random sampling, uncertainty sampling and different ASALs using different GANs. ASAL-Autoencoder leads to the best performance. ASAL-Disc. using Resnet-WGAN-CT performs worse than any other strategy because the sample matching using is unable to retrieve high entropy samples from the pool, see Fig. 21.
Figure 21: Average entropy of images that are selected and added to the training set for CIFAR-10 - two classes using different GANs. The mean entropy of the random sampling and the proposed method show hardly any difference. However, for maximum entropy sampling at least at the beginning ASAL selects images with higher entropy than random sampling.
E. Additional Results: CIFAR - ten classes

For CIFAR-10, we do not indicate the true label distribution by a tick because the validation set contains the same number of samples for each class.

Figure 22: Validation accuracy on *CIFAR-10 - ten classes* of a fully supervised model, for random sampling, uncertainty sampling and different ASALs using different GANs. The proposed method performs slightly worse than random sampling independent of the sample matching of GAN.
Figure 23: Average entropy of images that are selected and added to the training set for CIFAR-10 - ten classes using different GANs. There is hardly any difference for random sampling and ASAL in the entropy of newly added samples. Only at the beginning, random sampling retrieves samples with slightly higher entropy.

Figure 24: Label distribution for uncertainty sampling using maximal entropy and random sampling for CIFAR-10 - ten classes. Random sampling converges to the true label distribution in the pool. Maximum entropy sampling selects most frequently cat, dog, bird, deer and least frequently automobile, ship, truck to exceed the classification quality of random sampling.
Figure 25: Label distribution for active learning using different matching strategies, uncertainty measures and GANs for \textit{CIFAR-10 - ten classes}. Exactly the classes cat, dog that are most common in the training set of uncertainty sampling are less common in the data sets of most setups. Conversely, frog is for many setups the most common class but is not particularly frequent in the uncertainty sampling data set.
F. Matching Strategy Visualization

Figs. 26, 27, and 28 show examples of generated images of the same active learning cycle and the corresponding matches. All images are generated using WGAN-GP and the maximum entropy score. The generated images are not manually annotated. The moderate quality of the generated CIFAR-10 images prevents confidently annotating the images. Instead, n.a. indicates that the manual annotation is missing.

Figure 26: The rows show generated and matched images for \textit{CIFAR-10 - two classes} using WGAN-GP. The images have a reasonable quality and all matching strategies retrieve images that are visually close or show the same class.

Figure 27: The rows show generated and matched images for \textit{CIFAR-10 - ten classes} using WGAN-GP. Most of the generated images achieve only a moderate quality and even the closest samples from the pool have a high perceptual visual distance or assign images that show non matching classes, see last column where the images have a similar appearance but an appropriate label for the generated images would be horse but the selected samples show airplane and ship.

25
Figure 28: The rows show generated and matched images for MNIST - ten classes using WGAN-GP.

G. Generated Uncertain Samples

To produce the images displayed in Figs. 29, 30, 31 and 32 we trained the classifier using the initial training set. Then we used maximum entropy sample generation to produce samples with a high entropy.

Figure 29: Comparison of random and uncertain MNIST - two classes. The samples are generated using different GANs. The random samples are visually more appealing and identifying the label is easier than for the uncertain samples. WGAN-GP generate images for both digits equally likely, whereas DCGAN most frequently generates images showing the digit 7.

Figure 30: Comparison of random and uncertain MNIST - ten classes samples. The samples are generated using different GANs. The random samples are visually more appealing and identifying the label is easier than for the uncertain samples. WGAN-GP uniformly generates images for all digits, whereas DCGAN mainly generates images showing the digit 1.
Figure 31: Comparison of random and uncertain samples for **CIFAR-10 - two classes** using maximal entropy. The samples are generated using different GANs. The residual GANs (bottom row) produce more visually appealing samples than the other GANs. For most of these images it would be possible to identify whether the image shows a horse or automobile.

Figure 32: Comparison of random and uncertain samples for **CIFAR-10 - ten classes** using maximal entropy. The samples are generated using different GANs. The residual GANs (bottom row) produce more visually appealing samples than the other GANs. Although, the quality of the **random** images is higher than of the **uncertain** images, annotating with high confidence is still very difficult.