Some like it hot - visual guidance for preference prediction

Rasmus Rothe
Computer Vision Lab
D-ITET, ETH Zurich
rrethe@vision.ee.ethz.ch

Radu Timofte
Computer Vision Lab
D-ITET, ETH Zurich
radu.timofte@vision.ee.ethz.ch

Luc Van Gool
ESAT, KU Leuven
D-ITET, ETH Zurich
vangool@vision.ee.ethz.ch

Abstract

For people first impressions of someone are of determining importance. They are hard to alter through further information. This begs the question if a computer can reach the same judgement. Earlier research has already pointed out that age, gender, and average attractiveness can be estimated with reasonable precision. We improve the state-of-the-art, but also predict - based on someone’s known preferences - how much that particular person is attracted to a novel face. Our computational pipeline comprises a face detector, convolutional neural networks for the extraction of deep features, standard support vector regression for gender, age and facial beauty, and - as the main novelties - visual regularized collaborative filtering to infer interpersonal preferences as well as a novel regression technique for handling visual queries without rating history. We validate the method using a very large dataset from a dating site as well as images from celebrities. Our experiments yield convincing results, i.e. we predict 76% of the ratings correctly solely based on an image, and reveal some sociologically relevant conclusions. We also validate our collaborative filtering solution on the standard MovieLens rating dataset, augmented with movie posters, to predict an individual’s movie rating.

1. Introduction

‘First impressions count’ the saying goes. Indeed, psychology confirms that it only takes 0.1 seconds for us to get a first impression of someone [47], with the face being the dominant cue. Factors that are relevant for survival seem the ones evolution makes us pick up the fastest. These include age, gender, and attractiveness. We will call those quantifiable properties, such as age and gender, ‘demographics’. An everyday demonstration is that people on dating sites often base their decisions mainly on profile images rather than textual descriptions of interests or occupation. Our goal is to let a computer predict someone’s preferences, from single facial photos (in the wild). In particular, we try to predict in how far a previously unseen face would be attractive for a particular person who has already indicated preferences for people in the system.

Our main benchmark is a large dataset of more than 13,000 user profiles from a dating site. We have access to their age and gender, as well as more than 17 million ‘hot or not’ ratings by some users about some other users (their profile photo). The ratings are very sparse when compared to their potential number. For people who have given ratings, we want to predict new ratings for other people in and outside the dataset. As a test on the validity of the features that we extract, we first use them to predict the age, gender, and attractiveness (from the profile photos).

The visual information, here the profile image, presumably containing a face, is the main basis for any user-to-user rating. Therefore, we employ a face detector and crop the best detected face and its surrounding context (corresponding to body and posture) from which we extract deep features by means of a (fine-tuned) convolutional neural network. In order to make sure that these features are appropriate for the main task - automated attractiveness rating - we first test our features on age, gender, and facial beauty estimation for which previous methods and standard datasets exist. We obtain state-of-the-art results.

For predicting preferences for dataset members of users with known attractiveness ratings for a subset of others in the dataset collaborative filtering is known to provide top results, i.e. for movie [22] or advertisement suggestions [36]. We adapt this framework to take account of visual information, however. As our experiments will show, adding visual information improves the prediction, especially in cases with few ratings per user. In case of a new face, not part of the dataset and thus without a history of preferences,
we propose to regress the input image to the latent space of
the known users. By doing so, we alleviate the need for past
ratings for the query and solely rely on the query image.

The same technique can be applied to different visually
enhanced tasks, such as rating prediction of movies, songs,
shopping items, in combination with a relevant image (e.g.
movie poster, CD cover, image of the item). We test on the
MovieLens dataset augmented with poster images for each
movie, a rather weak information, to demonstrate the wider
applicability of our approach.

The main contributions of our work are:

- an extensive study on the inference of information
  from profile images using the largest dating dataset
  thus far
- a novel collaborative filtering approach that includes
  visual information for rating/preference prediction
- a novel regression technique for handling visual
  queries without rating history which prior work can-
  not cope with

2. Related Work

The focus of our paper is to infer as much information
as possible from a single image and to predict subjective
preferences based on an image query with possibly a prior
rating history. Next we review related works.

Image features. Instead of handcrafted features like SIFT,
HoG, or Gabor filters, we use learned features obtained us-
using neural networks [12, 23, 40]. The latter have shown
impressive performance in recent years. Such features have
already been used for age and gender estimation in [37, 45].

Demographics estimation. Multiple demographic prop-
erties such as age, gender, and ethnicity have been extracted
from faces. A survey on age prediction is provided by Fu et
al. [10] and on gender classification by Ng et al. [33]. Ku-
mar et al. [25] investigate image ‘attribute’ classifiers in the
context of face verification. Some approaches need face
shape models or facial landmarks [18, 20], others are meant
to work in the wild [5, 6, 37, 45] but still assume face lo-
calization. Generally, the former approaches reach better
performance as they use additional information. The er-
rors in model fitting or landmark localization are critical.
Moreover, they require supervised training, detailed anno-
tated datasets, and higher computation times. On top of the
extracted image features a machine learning approach such
as SVM [43] is employed to learn a demographics predic-
tion model which is then applied to new queries.

Subjective property estimation. While age and gender
correspond to objective criteria, predicting the attractive-
ness of a face is more subjective. Nonetheless, facial
beauty [1, 8, 13, 32, 48] can still be quantified by averag-
ing the ratings by a large group. Benchmarks and corre-


thestic quality estimation and predict what they call ‘inter-
estingness’ of an image, while Marchesotti et al. [30] dis-
cover visual attributes (including subjective ones) to then to
use them for prediction. Also, recently Kiapour et al. [21]
inferred complex fashion styles from images. Generally,
the features and methods used for age and gender can be
adapted to subjective property estimation, and we do the
same in this paper. From the literature we can observe three
trends: (i) besides Whitehill and Movellan [46], most pa-
pers focus on predicting facial beauty averaged across all
ratings, whereas we aim at predicting the rating by a spe-
cific person; (ii) as pointed out in the study by Laurentini
and Bottino [26] usually small datasets are used, sometimes
with less than 100 images and with only very few ratings
per image – our dataset contains more than 13,000 images
with more than 17 million ratings; (iii) most datasets are
taken in a constrained environment showing aligned faces.
In contrast, our photos contain in many cases also parts of
the body and some context in the background. Thus, we fo-
cus not just on facial beauty but on general attractiveness
of the person – referred to as hotness in the following.

Preferences/ratings prediction. The Internet brought an
explosion of choices. Often, it is difficult to pick suitable
songs to hear, books to read, movies to watch, or - in the
context of dating sites - persons to contact. Among the best
predictors of interest are collaborative filtering approaches
that use the knowledge of the crowd. i.e. the known pref-
ences/ratings of other subjects [2, 38]. The more prior
ratings there are, the more accurate the predictions become.
Shi et al. [39] survey the collaborative filtering literature.
Matrix factorization lies at the basis of many top collabora-
tive filtering methods [22, 27]. Given the importance of the
visual information in many applications, we derive a matrix
factorization formulation regularized by the image informa-
tion. While others [39] proposed various regularizations,
we are the first to prove that visual guidance helps prefer-
ence prediction. Moreover, we propose to regress queries
without rating history to a latent space derived through ma-
trix factorization for the known subjects and ratings.

Social networks. The expansion of the internet and the ad-
vance of smartphones boosted the (online) social networks
worldwide. Networks such as Facebook facilitate interac-
tion, sharing, and display of information and preferences
among individuals. Yet, time is precious and hence efforts
are made to develop filters and ranking tools to assist users.
A recent study by Youyou et al. [49] shows that accurate
predictions about the personality of a user can be made us-
ing her/his ‘likes’. Contents and ads can then be person-
alized and this is extremely important for social networks
and search engines such as Google [41]. This paper focuses
on dating sites and the prediction of attractiveness ratings.
Most such works [3, 24] rely on past ratings and cannot
cope when there are none or few.
3. Visual features

Razavian et al. [34] showed that features extracted from convolutional neural networks (CNN) are very powerful generic descriptors. Inspired by that, for all our experiments we use the VGG-16 [40] features which are pre-trained on a large ImageNet object dataset and result in a descriptor of length 4,096. We use the implementation by Vedaldi and Lenc [44]. We reduce the dimensionality using PCA to keep \( \sim 99\% \) of the energy. Before we use these features to predict attractiveness to a particular user, we first confirm that the extracted visual features are powerful enough to capture minor facial differences by predicting age and gender.

We perform reference experiments on a widely used dataset for age prediction, the MORPH 2 database [35]. We also test gender estimation on the same MORPH 2 dataset. Unfortunately, besides the dataset provided by Gray et al. [13] – to the best of our knowledge – there are no other publicly available large datasets on averaged facial beauty. As shown next our features achieve state-of-the-art performance for age, gender, and facial beauty prediction.

3.1. Predicting age and gender

Our experiments are conducted on a publicly available dataset, the MORPH 2 database [35]. We adopt the experimental setup of [5, 6, 15, 45], where a set of 5,475 individuals is used whose age ranges from 16 to 77. The dataset is randomly divided into 80% for training and 20% for testing. Following the procedure described in [12], our CNN features are fine-tuned on the training set.

The age is regressed using Support Vector Regression (SVR) [4] with an RBF kernel and its parameters are set by cross-validation on a subset of the training data. We report the performance in terms of mean absolute error (MAE) between the estimated and the ground truth age.

As shown in Table 1, we achieve state-of-the-art performance on the MORPH 2 dataset (3.45 years MAE) by reducing with more than a full year the error of the currently best result (4.77 MAE reported by [45]). For gender prediction on the MORPH 2 dataset we keep the same partition and procedure as for age and achieve 96.26% accuracy, which, despite the small training set, is on par with other results in the literature [16, 17]. Fig. 4 shows several good and erroneous predictions of our method on the MORPH 2 dataset. Fig. 3 shows averages of faces ranked according to age on MORPH 2 and beauty on Gray, resp. On our more challenging Hot-or-Not dataset we achieve 3.61 MAE for age prediction and 88.96% accuracy for gender prediction.

3.2. Predicting facial beauty

Following a similar procedure as for age prediction, we test our features on the dataset introduced by Gray et al. [13]. The Gray dataset contains 2056 images with female faces collected from a popular social/dating website¹. The facial beauty was rated by 30 subjects and the ratings were then normalized as described in [13]. The dataset is split into 1028 images for training and 1028 for testing. We report the average performance across exactly the same 5 splits from the reference paper in terms of Pearson’s correlation coefficient, the metric from the original paper. Also, we report performance with and without face alignment using the same alignment algorithm of Huang et al. [19].

As shown in Table 2 our proposed features achieve state-of-the-art performance on predicting facial beauty as averaged over multiple raters. We improve by more than 10% over the current best result.

---

¹http://hotornot.com
over the best score reported by [13] for the raw images. A couple of per image results are depicted in Fig. 4.

4. Predicting preferences

Our goal is to make personalized predictions, such as how a specific male subject $m \in M$ rates a female subject $f \in F$. The rating $R_{mf}$ is 1 if ‘$m$ likes $f$’, -1 if ‘$m$ dislikes $f$’, and 0 if unknown. $f$ is also called the query user, as at test time we want to predict the individual ratings of all men for that woman. Due to space limitations, we derive the formulation for this case. Yet it is also valid when swapping sexes, i.e., when women are rating men.

In the following section we phrase the problem as a collaborative filtering problem, assuming that we know past ratings for both men and women. In Section 4.2 we extend the formulation to also consider the visuals of the subjects being rated. In Section 4.3 we present a solution to predict the ratings solely based on the visual information of the female subjects, without knowing how they were rated in the past.

4.1. Model-based collaborative filtering (MF)

We phrase the problem of a user $m$ rating the image of user $f$ as a model-based collaborative filtering problem. The model learned from known ratings is then used to predict unknown ratings. In its most general form, we have

$$g(P_m, Q_f) \Rightarrow R_{mf}, \ m = 1, 2, ..., M, \ f = 1, 2, ..., F, \ (1)$$

where the function $g$ maps the model parameters to the known ratings. $P_m$ denotes a set of model parameters describing the preferences of user $m$. Similarly, $Q_f$ describes the appearance of user $f$, i.e., a low-dimensional representation of how the appearance of a user is perceived. We now aim at estimating the model parameters given the ratings we know.

In recent years, Matrix Factorization (MF) techniques have gained popularity, especially through the Netflix challenge, where it achieved state-of-the-art performance [22]. The basic assumption underlying MF models is that we can learn low-rank representations, so-called latent factors, to predict missing ratings between user $m$ and image $f$. One can approximate the ratings as

$$R \approx P^T Q = \hat{R}. \ (2)$$

In the most common formulation of MF [39] we can then frame the minimization as

$$P^*, Q^* = \arg\min_{P,Q} \frac{1}{2} \sum_{m=1}^{M} \sum_{f=1}^{F} (P_{mf}^T R_{mf} - P_{mf}^T Q_f)^2 + \frac{\lambda}{2} \|P\|^2 + \frac{\lambda}{2} \|Q\|^2$$

(3)

where $P$ and $Q$ are the latent factors and $P^*$ and $Q^*$ their optimal values. $I_{mf}$ is an indicator function that equals 1 if there exists a rating $R_{mf}$. The last term regularizes the problem to avoid overfitting.

4.2. Visual regularization (MF+VisReg)

Knowing that the users in the app rate the subjects of the opposite sex solely based on the image, we make the assumption that people with similar visual features have similar latent appearance factors $Q$. Thus we can extend the formulation by adding the visual features $V$ of the query images to further regularize the optimization

$$L(P, Q) = \frac{1}{2} \sum_{m=1}^{M} \sum_{f=1}^{F} (P_{mf}^T R_{mf} - P_{mf}^T Q_f)^2 + \frac{\lambda_P}{2} \|P\|^2 + \frac{\lambda_Q}{2} \|Q\|^2 + \alpha_2 \sum_{g=1}^{F} (S_{fg} - Q_f^T Q_g)^2.$$

(4)

The visual similarity is defined as

$$S_{fg} = \frac{V_f^T V_g}{\|V_f\| \|V_g\|}.$$

(5)

The optimal latent factors are calculated by gradient descent, where the derivatives are

$$\frac{\partial L}{\partial P_{mf}} = \sum_{f=1}^{F} I_{mf} (P_{mf}^T Q_f - R_{mf}) Q_f + \lambda_P P_m + 2\alpha_2 \sum_{g=1}^{F} (Q_f^T Q_g - S_{fg}) Q_g + \lambda Q_f.$$

$$\frac{\partial L}{\partial Q_f} = \sum_{m=1}^{M} I_{mf} (P_{mf}^T Q_f - R_{mf}) P_m + \lambda_Q Q_f$$

(6)

4.3. Visual query

We now want to predict how user $m$ rates user $f$ without knowing any past ratings of $f$ but knowing her visual feature $V_f$ (see Fig. 2). This implies that we do not know the latent factor $Q_f$ for $f$. The goal is to get an estimate $\hat{Q}_f$ of $Q_f$ based solely on the visual feature $V_f$. Then we would be able to regress the rating as

$$\hat{R}_{mf} = P_{mf}^T \hat{Q}_f.$$

(7)

Learning a global regression led to poor results. Instead our approach is inspired by the recently introduced anchored neighborhood regression (ANR) method for image super-resolution [42], where the problem is formulated as a piece-wise local linear regression of low to high resolution image patches and with offline trained regressors. In contrast to ANR, each sample is an anchor and the neighborhood is spanned over all other training samples and weighted according to its similarity to the anchor. This way we are obtaining more robust local regressors that can cope with the scarcity of the data.
As for regularizing MF, we assume that the visual features \( V \) and the latent factor \( Q \) locally have a similar geometry. Further, we assume that we can locally linearly reconstruct each visual feature or latent factor by its neighbors. Under these assumptions we can reconstruct features and latent factors using the same weights for the neighbors. In the visual space we now aim to find these weights \( \beta \) by phrasing the problem as a ridge regression

\[
\min_{\beta_g} \| V_g - N_{V_g} \beta_g \|^2 + \lambda \left( \kappa \| \Gamma_g \beta_g \|^2 + (1-\kappa) \| \beta_g \|^2 \right),
\]

where \( N_{V_g} \) is a matrix of the neighboring visual features of \( V_g \) stacked column-wise and \( \kappa \) is a scalar parameter. The optimization is regularized by the similarity to its neighbors according to eq. 5, in the sense that greater similarity yields greater influence on \( \beta \):

\[
\Gamma_g = \text{diag}(1 - S_{g1}, 1 - S_{g2}, ..., 1 - S_{gF}).
\]

The closed-form solution of the problem can be written as

\[
\beta_k = \left[ N_{V_g}^T N_{V_g} + \lambda \left( \kappa \Gamma_g^T \Gamma_g + (1-\kappa)I \right) \right]^{-1} N_{V_g}^T V_g.
\]

As we assume that the latent space behaves similarly locally, we can regress the latent factor \( Q_g \) as a linear combination of its neighbors using the same \( \beta_g \). Note that \( N_{Q_g} \) corresponds to the latent factors of \( N_{V_g} \), i.e. the neighbors in the visual space. Plugging in our solution for \( \beta_g \) we get

\[
Q_g = N_{Q_g} \beta_g \\
= N_{Q_g} \left[ N_{V_g}^T N_{V_g} + \lambda \left( \kappa \Gamma_g^T \Gamma_g + (1-\kappa)I \right) \right]^{-1} N_{V_g}^T V_g,
\]

Thus we have found a projection \( M_g \) from a visual feature \( V_g \) to its latent factor \( Q_g \). At test time for a given visual feature \( V_f \), we now aim to find the most similar visual feature in the training space, \( \hat{g} = \arg \max_g S_{fg} \). Then we use the projection matrix of \( \hat{g} \) to obtain \( \hat{Q}_f \) to finally estimate the rating of user \( m \) for the image of user \( f \) as

\[
\hat{R}_{mf} = P_m^T \hat{Q}_f, \quad \hat{Q}_f = M_f V_f.
\]

### 5. Experiments

In this section we present qualitative and quantitative results of our proposed framework on the Hot-or-Not and the MovieLens dataset.

#### 5.1. Hot-or-Not

**5.1.1 The dataset**

Our dataset\(^2\) was kindly provided by a mobile hot-or-not dating application. The app shows the user people of the sex of interest, one after the other. The user can then like or dislike them. If both like each other’s profile photo they are matched and can chat to each other. People can select up to 5 photos from Facebook for their profile.

**Dataset statistics.** Before performing any experiments we removed underage people, anyone over 37 and bi- and homosexual users as these comprise only a small minority of the dataset. All users who received less than 10 ratings were also removed. As the majority of the people decide on the first photo, we ignore the other photos. The resulting dataset has 4,650 female users and 8,560 male users. The median age is 25. In total there are 17.33 million ratings, 11.27m by men and 6.05m by women. Interestingly, 44.81% of the male ratings are positive, while only 8.58% of the female ratings are positive. Due to this strong bias of ratings by women, we only predict the ratings of men. There are 332,730 matches.

![Image of preferences by age for women and men. Red indicates that the age group likes the respective other group.](Image)

**Preferences bias.** To investigate the natural bias caused by age, we divide the men and women from our dataset according to their age and gender. For each age group of men we counted the percent of hot vs. not on the ratings towards the age groups of women and vice versa. Fig. 5 describes the preferences by age as found in our dataset. Women generally prefer slightly older men and give better ratings the older they get. In comparison, men on this app prefer women under 25.

**Hotness paradox.** We notice an interesting phenomenon. Most people have a lower rating than their visually similar neighbors, on average, and this holds for both men and
women. In Fig. 6 we report the percentage of cases where the average hotness of the neighborhood of a subject is greater than that of the subject, and this for a neighborhood size from 1 to $10^3$. We plot also the results when we use our latent Q representations for retrieving neighbors. Surprisingly, this time the situation is reversed, the subjects tend to be hotter than their Q-similar neighborhood. Regardless the choice of similarity we have a strong deviation from the expected value of 50%. We call this phenomenon the ‘Hotness paradox’. It relates to the so-called ‘Friendship paradox’ [9] in social networks, where most people have fewer friends than their friends have.

**Visual features.** As the space covered by the person varies greatly between images, we run a top face detector [31] on each image. Then we crop the image to the best scoring face detection and include its surrounding (100% of the width to each side and 50% of the height above and 300% below), to capture the upper-body and some of the background. If the face is too small or the detection score too low, we take the entire image. Then we extract CNN features.

### 5.1.2 Experimental setup

For all experiments, 50% of either gender are used for training and the rest for testing. For each user in the testing set, 50% of the received ratings are used for testing. We compare different methods. **Baseline** predicts the majority rating in the training set. Matrix factorization is applied without and with visual regularization, *MF* ($\alpha_1 = 0.1$) and *MF+VisReg* ($\alpha_2 = 0.1$), resp. The dimensionality of the latent vector of $P$ and $Q$ is fixed to 20. The other parameters were set through cross-validation on a subset of the training data. We predict the ratings a subject receives based upon different knowledge: For **Visual** we solely rely on the image of the subject which means that we do not know any ratings the subject has received so far. For **10 Ratings**, **100 Ratings**, **Full History**, we instead base the prediction upon a fixed set of known ratings for each query user. We report the average accuracy, i.e. the percentage of correctly predicted ratings of the testing set, and the Pearson’s correlation.

### 5.1.3 Results

**Performance.** Fig. 7 shows how the average accuracy varies with the number of known past ratings for the query user. We report the average performance across all men’s ratings. Knowing just the image of the person, we can predict 75.92% of the ratings correctly. Adding past received ratings of the user improves performance to up to 83.64%. Matrix factorization significantly improves as more ratings are known. If only few ratings are available, regularizing the matrix factorization with the visuals boosts performance significantly, i.e. from 72.92% to 78.68% for 10 known ratings. Table 3 gives a summary of the achieved results with different settings.

#### Table 3. Preference prediction results on Hot-or-Not dataset for female queries.

<table>
<thead>
<tr>
<th></th>
<th>Number of Known Ratings</th>
<th>Query Accuracy</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>N/A</td>
<td>54.92%</td>
<td>N/A</td>
</tr>
<tr>
<td><em>MF</em></td>
<td>Visual</td>
<td>75.92%</td>
<td>0.522</td>
</tr>
<tr>
<td><em>MF+VisReg</em></td>
<td>Visual</td>
<td>78.68%</td>
<td>0.576</td>
</tr>
<tr>
<td><em>MF</em></td>
<td>10 Ratings</td>
<td>78.68%</td>
<td>0.576</td>
</tr>
<tr>
<td><em>MF+VisReg</em></td>
<td>100 Ratings</td>
<td>81.82%</td>
<td>0.635</td>
</tr>
<tr>
<td><em>MF</em></td>
<td>Full History</td>
<td>83.64%</td>
<td>0.671</td>
</tr>
<tr>
<td><em>MF+VisReg</em></td>
<td>Full History</td>
<td>87.5%</td>
<td>0.757</td>
</tr>
</tbody>
</table>

**Latent space Q vs. preferences.** In Fig. 9 we visualize the learned latent space $Q$ from the matrix factorization by PCA projecting it to two dimensions and adding the hotness and age properties for both women and men with visual regularization. The learned latent factor $Q$ captures appearance and for women there is a clear separation in terms of attractiveness and age, whereas for men the separation is less obvious. In Fig. 10 we visualize the women according to the learned latent factor $Q$.

According to the preferences $P$ and the learned latent $Q$ one can have a more in-depth view on the appearance of women and men. In Fig. 11 both men and women are clustered according to their 2D representation of the learned latent factors $P$ (preferences of men) and $Q$ (appearances of women), respectively. For visualization purposes we used 100 user images for each cluster and 10 clusters. The men...
5.2. MovieLens

5.2.1 The dataset

We also perform experiments on the MovieLens 10M dataset. It contains 10,000,054 ratings from 69,878 users for 10,681 movies. Ratings are made on a 5-star scale, with half-star increments. On average, each movie has 3,384 ratings and each user rates 517 movies. Note that even though there are more than 10 million ratings, the rating matrix is sparse with only 1.34% of all ratings known. We augment each movie with the poster image from IMDB and extract the same deep CNN features as for the Hot-or-Not dataset.

5.2.2 Experimental Setup

The experimental setup in term of training and testing split is identical to the Hot-or-Not dataset. As the movie posters are much less informative regarding the ratings in comparison to the Hot-or-Not images, the visual regularization is reduced to $\alpha_2 = 0.001$. For a given movie we want to infer the ratings of all users. Again, we evaluate the case where just the poster is known and also cases where a varying number of ratings is known. As a baseline we show how a prediction made at random would perform, assuming that there is no bias in the ratings of the test set.

Visual queries without past ratings. We validate our approach on images outside our dataset, retrieved from the internet for celebrities. By applying the visual query regression to the Q space we can make good predictions for such images. For a visual assessment see Fig. 12. This figure also depicts a number of issues our pipeline faces: too small faces, detector failure, wrongly picked face, or simply a wrong prediction. We also tested our method on cartoons and companion pets with the predictor trained on Hot-or-Not. The results are surprising.

Instagram filters or how to sell your image. Images and their hotness prediction also indicate which changes could improve their ratings. Earlier work has aimed at the beautification of a face image by invasive techniques such as physiognomy changes [28] or makeup [14, 29]. Yet, we found that non-invasive techniques (not altering facial geometry and thus ‘fair’) can lead to surprising improvements. We have evaluated the most popular Instagram filters for our task. We observed that the filters lead to an increase in predicted hotness. In Fig. 8 we show a couple of results in comparison to the original image. Note that with our predictor and such Instagram filters a user can easily pick its best profile photo.
Table 4 summarizes the performance. Fig. 14 shows how the number of known ratings impacts the MAE. Visual regularization of MF improves performance, especially when few ratings are known, i.e., for 10 known ratings the MAE can be reduced by 15% from 1.031 to 0.872. When just the movie poster is known, the MAE is 0.813, which is on par with knowing 30 ratings. Fig. 13 shows some movie posters. We also show overrated and underrated posters, i.e., posters where our algorithm — based on the poster — predicts a much better or worse score than the actual movie rating.

6. Conclusion

We proposed a collaborative filtering method for rating/preference prediction based not only on the rating history but also on the visual information. Moreover, we can accurately handle queries with short or lacking rating history. We evaluated our system on a very large dating dataset and on the MovieLens dataset augmented with poster images. To the best of our knowledge, we are the first to report on such a large dating dataset, and to show that adding weak visual information improves the rating prediction of collaborative filtering methods on MovieLens. We achieved state-of-the-art results on facial beauty, age and gender prediction and give some sociologically interesting insights.
References


