
A+: Adjusted Anchored Neighborhood
Regression for Fast Super-Resolution

Radu Timofte, Vincent De Smet, Luc Van Gool

CVL, D-ITET, ETH Zürich, Switzerland
VISICS, ESAT/PSI, KU Leuven, Belgium

Abstract. We address the problem of image upscaling in the form of
single image super-resolution based on a dictionary of low- and high-
resolution exemplars. Two recently proposed methods, Anchored Neigh-
borhood Regression (ANR) and Simple Functions (SF), provide state-of-
the-art quality performance. Moreover, ANR is among the fastest known
super-resolution methods. ANR learns sparse dictionaries and regressors
anchored to the dictionary atoms. SF relies on clusters and corresponding
learned functions. We propose A+, an improved variant of ANR, which
combines the best qualities of ANR and SF. A+ builds on the features
and anchored regressors from ANR but instead of learning the regressors
on the dictionary it uses the full training material, similar to SF. We val-
idate our method on standard images and compare with state-of-the-art
methods. We obtain improved quality (i.e. 0.2-0.7dB PSNR better than
ANR) and excellent time complexity, rendering A+ the most efficient
dictionary-based super-resolution method to date.

1 Introduction

100 10 1 0.1
28.3

28.4

28.5

28.6

28.7

28.8

28.9

29.0

29.1

29.2

Slower <−−− Running time (sec) −−−> Faster

P
S

N
R

 (
d
B

)

Yang et al.

Zeyde et al.

NE + LLE

NE + NNLS

ANR

A+1024

256

64

16

Fig. 1. Our proposed A+ method (red, operating points for 16, 64, 256, and 1024 sized
dictionaries) provides both the best quality and the highest speed in comparison with
state-of-the-art example-based SR methods. A+ preserves the time complexity of ANR
(green) [1]. See Table 1 and Fig. 2 for more details.

Single-image super-resolution (SR) is a branch of image reconstruction that
concerns itself with the problem of generating a plausible and visually pleasing

2 Radu Timofte, Vincent De Smet, Luc Van Gool

high-resolution (HR) output image from a low-resolution (LR) input image. As
opposed to the similar branch of image deblurring, in SR it is generally assumed
that the input image, while having a low resolution in the sense of having a
low amount of pixels, is still sharp at the original scale. SR methods are mainly
concerned with upscaling the image without losing the sharpness of the original
low-resolution image.

SR is an ill-posed problem because each LR pixel has to be mapped onto
many HR pixels, depending on the desired upsampling factor. Most popular
single-image SR methods try to solve this problem by enforcing natural image
priors based on either intuitive understanding (e.g. natural images consist mainly
of flat regions separated by sharp edges) or statistical analysis of many natural
images [2–5]. Some recent approaches try to shift the focus from finding good
image priors to finding an appropriate blur kernel [6, 7]. In both cases the authors
usually work on the level of small image patches. These provide a good basis for
finding effective local image priors and can be combined in different ways ranging
from simple averaging of overlapping patches to finding maximum-a-posteriori
patch candidate combinations using belief propagation or graph cuts [8]. Very
recently, convolutional neural networks were applied to this problem [18].

Patch-based SR methods tend to require a large database of many image
patches in order to learn effective priors and to super-resolve general classes of
natural images. Both the resulting time-complexity and memory requirements
can be strong limiting factors on the practical performance of these methods.
One class of SR approaches that tries to solve this bottleneck are the neighbor
embedding approaches [9, 10]. These have the nice feature of compensating for
the lack of density in the patch feature space by assuming that all patches lie on
manifolds in their respective LR and HR spaces, which allows for an input patch
to be approximated as an interpolation of existing database patches, with one
set of interpolation coefficients being applied to both spaces. Another class of
methods is focused on creating sparse representations of large patch databases [4,
11], which can reduce overfitting to training data and is a good way of avoiding
the need for a large patch database.

Two recent neighbor embedding approaches, ANR [1] and SF [12], have been
successful in reducing the time complexity of single-image super-resolution sig-
nificantly without sacrificing the quality of the super-resolved output image.
They show results which are qualitatively and quantitatively on par with other
state-of-the-art methods, while improving execution speed by one or two orders
of magnitude. We take these approaches (specifically ANR) as a starting point
to introduce a novel SR method, which we have dubbed A+, that makes no sac-
rifices on the computational efficiency and achieves an improved quality of the
results which surpasses current state-of-the-art methods. Fig. 1 shows the perfor-
mance of our method compared to other neighbor embedding and sparsity-based
methods and shows our improvement over the original ANR approach.

In the following section we will first give some background on other neighbor
embedding approaches and sparse coding approaches and review the SF method.
In section 3 we introduce our A+ approach and explain it in detail. Section 4

A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution 3

describes our experiments, where we compare the performance of our approach
to other state-of-the-art methods based on quality and processing time. Finally
in section 5 we conclude the paper.

2 Dictionary-based Super-Resolution

Our proposed approach builds on theories from neighbor embedding and sparse
coding super-resolution methods. Both of these are dictionary-based approaches,
which means they rely on a dictionary of patches or patch-based atoms that can
be trained to form an efficient representation of natural image patches. This gives
them the potential to drastically reduce the computational complexity of patch-
based single-image super-resolution methods and enhance their representational
power.

2.1 Neighbor embedding approaches

One way to add more generalization ability to the basic patch-based super-
resolution scheme is to allow LR input patches to be approximated by a linear
combination of their nearest neighbors in the database. Neighbor embedding
(NE) approaches assume that the LR and HR patches lie on low-dimensional
nonlinear manifolds with locally similar geometry. Assuming this, the same in-
terpolation coefficients that are used between LR patches to approximate an
input patch can be used in HR space to estimate an output patch. Chang et
al. [9] assume that the manifolds lie on or near locally linear patches and use
Locally Linear Embedding (LLE) [13] to describe LR patches as linear combina-
tions of their nearest neighbors, assuming the patch space is populated densely
enough. The same coefficients can then be used to perform linear interpolation
of the corresponding HR patches:

x =

K∑
i=1

w?
ix
′
i. (1)

We use x to refer to the HR output patch, x′i is the i’th candidate HR patch
corresponding to the i’th nearest neighbor of the input patch in LR space, w?

i is
the weight of the i’th candidate, and we limit our search to K nearest neighbors.
Bevilacqua et al. [10] also use neighbor embedding for SR. They use a nonnega-
tive least-squares decomposition to find weights that can be used in LR and HR
space.

2.2 Sparse coding approaches

Instead of using a dictionary consisting of a collection of patches taken from
natural images, as neighbor embedding methods typically do, one could try to
create an efficient representation of the patch space by training a codebook of
dictionary atoms. Yang et al. [4] start from a large collection of image patches

4 Radu Timofte, Vincent De Smet, Luc Van Gool

and use a sparsity constraint to jointly train the LR and HR dictionaries so that
they are able to represent LR patches and their corresponding HR counterparts
using one sparse representation. Once the dictionaries are trained, the algorithm
searches for a close sparse representation of each input patch as a combination
of dictionary atoms:

min
α
‖Dlα− y‖22 + λ‖α‖1, (2)

where Dl is the LR dictionary, α is a weight matrix that functions as a sparse
selector of dictionary atoms, and λ is a weighing factor to balance the importance
of the sparsity constraint. Other approaches, most notably Zeyde et al. [11],
build on this work and reach significant improvements both in speed and output
quality.

2.3 Simple Functions

The neighbor embedding approaches use a database of patches and represent
each LR input patch as a combination of its nearest neighbors, whereas the
sparse coding approaches explicitly enforce sparsity to create a coupled LR-HR
dictionary which is used to map an LR patch to HR space. Another approach
would be to cluster the LR patch space and to learn a separate mapping from
LR to HR space for each cluster. This is what Yang and Yang [12] propose.
They collect a large amount of natural images to harvest patches. These are
clustered into a relatively small number of subspaces (e.g. 1024 or 4096) for
which a simple mapping function from LR to HR is then learned. The authors
compare three different functions for this mapping: an affine transformation
learned for each cluster using a least squares approximation, and a support
vector regressor with either a linear kernel or a radial basis function kernel.
Because of the visual similarity of the resulting images for all of these, the
authors propose to use the affine transformation, as it is by far computationally
the fastest. The mapping coefficients can be learned offline and stored for each
cluster. LR patches are then super-resolved by finding the closest cluster center
and applying the corresponding transformation,

x = C?
i

[
y
1

]
, with C?

i = arg min
Ci

∥∥∥∥∥Yi −Ci

[
Xi

1

] ∥∥∥∥∥
2

2

. (3)

We denote with y and x an LR input patch that is matched to cluster i and its
estimated HR output patch, with Ci the transformation matrix and Yi and Xi

the training patches for cluster i. 1 is a vector with the same number of elements
as the amount of training patches in Xi, filled entirely with ones. Storing the
mapping coefficients results in a big boost in performance speed.

2.4 Anchored Neighborhood Regression

The Anchored Neighborhood Regression approach proposed by Timofte et al. [1]
has a similar strategy to boost performance speed but shares more properties

A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution 5

with sparse coding than the simple functions approach. It relies on precalculating
and storing transformations to dramatically improve execution speed at test-
time. Starting from the same dictionaries as Zeyde et al. [11], which are efficiently
trained for sparsity, ANR reformulates the patch representation problem from
eq. (2) as a least squares regression regularized by the l2-norm of the coefficient
matrix (which we refer to as β to avoid confusion with the sparse methods
described in Section 2.2):

min
β
‖y −Nlβ‖22 + λ‖β‖2. (4)

Instead of considering the whole dictionary like the sparse encoding approach
in Section 2.2, the authors propose to work in local neighborhoods Nl,h of the
dictionary. The main advantage of working with the l2-norm is that this turns
the problem into Ridge Regression [14] and gives it a closed solution, which
means they can precalculate a projection matrix based on the neighborhood
that is considered. An LR input patch y can be projected to HR space as

x = Nh(NT
l Nl + λI)−1NT

l y = Pjy, (5)

with Pj the stored projection matrix for dictionary atom dlj . Each dictionary
atom has its own neighborhood Nl of dictionary atoms assigned to it. The SR
process for ANR at test time then becomes mainly a nearest neighbor search
followed by a matrix multiplication for each input patch. On the extreme part of
the spectrum the neighborhoods could be made the size of the entire dictionary
Dl,h. In this case each atom has the same transformation matrix and there is
no need to perform a nearest neighbor search through the dictionary. This is
called Global Regression (GR), and at test time the global transformation can
be applied, reducing the process to the application of a simple stored projection.
This makes the process lose a lot of flexibility and results in a lower output
quality for the benefit of greatly enhanced speed.

3 Adjusted Anchored Neighborhood Regression (A+)

We propose a method based on the ANR approach [1]. We name our method
A+ due to the fact that it inherits and adjusts the ANR key aspects such as
the anchored regressors, the features, and the test time complexity, while at the
same time significantly improving over its performance. We will first explain the
insights that lead to A+, then we will provide its general formulation and then
discuss the influence of the different model parameters.

3.1 Insights

Most neighbor embedding methods (exceptions are ANR [1] and SF [12]) rely
on extracting a neighborhood of LR training patches for each LR test patch,
followed by solving the HR patch reconstruction problem, usually through some

6 Radu Timofte, Vincent De Smet, Luc Van Gool

optimization process. ANR instead places this computation at the training stage,
leaving at test time only the search of a neighboring anchor followed by a pro-
jection to HR space. The anchoring points are the atoms of a sparse dictionary
trained to span the space of LR patch features and to provide a uniform cover-
age, while at the same time being optimized to have a low decomposition error
for the LR patch features available in the training database. On these anchor-
ing points ANR learns offline regressors to the local neighborhood of correlated
atoms from the same sparse dictionary.

We make the following observations related to the ANR formulation:

(i) the atoms are rather sparsely sampling the space, while the training pool of
samples is (or can be) practically infinite, as long as enough training images
are available to harvest patches;

(ii) the local manifold around an atom, which is the associated hypercell of an
atom, is more accurately spanned by dense samples interior to the hypercell
than by a set of external neighboring atoms.

Therefore, we can expect that the more samples we use from the interior of
the anchor hypercell the better the approximation of that subspace or manifold
will be, both on the unit hypersphere where the atom lies and on any translation
of it along the atom’s direction.

For this purpose we will consider the neighborhood of training samples that
may cover both the hypercell of the anchoring atom and part of its adjacent atom
hypercells. This is one of the key ideas exploited in our A+ method. Another one
is the assumption that in the neighborhood of an atom one can regress linearly
to a solution that accommodates all the local neighborhood training samples and
moreover, can interpolate to samples from the space spanned by them. The bigger
the neighborhood of LR patches, the stronger the linearity imposed not only on
LR patches but on their corresponding HR patches. The one LR patch to many
HR patches problem is tackled by the power of linear LR patch decomposition
over many close to unit norm patches from anchored neighborhoods. Having
a dictionary of anchors of unit l2 norm reduces the general clustering of the
whole LR space to a clustering around the unit hypersphere, where the atoms
are definitive and the correlation of a sample to the atom can determine its
adherence to the atom’s spanned space of LR patches. Therefore, for a new LR
patch, we first find its most correlated atom and then we apply the sample-based
regression stored by that atom to reconstruct the HR patch in the same fashion
as ANR.

The SF [12] method differs from A+ (and ANR) in at least 3 main aspects:
SF uses different LR patch features, follows the Euclidean space clustering as-
sumption and its functions are bounded to the cluster samples. Since a sample
can be found on the boundary area between clusters, we consider that either
the number of clusters should be consistently large or the functions should be
anchored on clusters but learned using also the neighboring clusters. Therefore,
while we formulate our insight using the ANR framework, a derivation inside
the SF framework could also be possible.

A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution 7

3.2 Formulation

We adopt the dictionary training method of Zeyde et al. and ANR, which first
optimizes over LR patches to obtain a sparse dictionary Dl to then reconstruct
its corresponding Dh by enforcing the coefficients in the HR patch decompo-
sitions over Dh to be the same coefficients from the corresponding LR patch
decompositions over Dl.

ANR and the other sparse coding approaches have no need for the training
samples anymore after the dictionary is trained, but for A+ they are still crucial,
as the neighborhood used for regression (calculated during training and used at
test time) is explicitly taken from the training pool of samples. We reuse the
ridge regression formulation of ANR as shown in eq. (4) to regress at train time,
but redefine the neighborhood in terms of the dense training samples rather than
the sparse dictionary atoms. Our optimization problem then looks like this,

min
δ
‖y − Slδ‖22 + λ‖δ‖2. (6)

We have replaced the neighborhood of atoms Nl (of which each dictionary atom
has its own version) with a matrix Sl, containing the K training samples that
lie closest to the dictionary atom to which the input patch y is matched. We
set K to 2048 in our experiments. The distance measure used for the nearest
neighbor search is the Euclidean distance between the anchor atom and the
training samples. More details on the sampling can be found in the next section.

3.3 Sampling anchored neighborhoods

In order to have a robust regressor anchored to an atom, we need to have a
neighborhood of samples (in a Euclidean sense) centered on the atom, or brought
to unit l2 norm, on the surface of the unit hypersphere. When the l2 norm of
the LR patch feature is below a small threshold (0.1 in our case) we do not l2-
normalize it, as we want to avoid enhancing the potential noise of a flat patch.
The local manifold on the unit hypersphere can be approximated by the set of
neighboring samples, even if they are not all lying on the hypersphere. However,
due to our choice of LR patch features (the same as ANR and the approach of
Zeyde et al.) we do have a uniform scaling factor between the LR feature and its
HR patch. Therefore, when we bring the LR patch features to the hypersphere
by l2 normalization we also transform the corresponding HR patches linearly by
scaling them with the same factor (the l2-norm of the original LR patch features)
to preserve the relation between LR and HR spaces.

We propose that if more samples are closer to the anchoring atom the lo-
cal manifold approximation through regression on these samples will improve.
Therefore, we retrieve for each atom as many training samples as a given neigh-
borhood size. The same samples can be shared among different atom centered
neighborhoods. This ensures that the regressors are learned robustly even in ex-
treme cases where either the number of atoms is very small with respect to the
number of training samples or where we only have few samples around certain
atoms.

8 Radu Timofte, Vincent De Smet, Luc Van Gool

4 Experiments

In this section we analyze the performance of our proposed A+ method in rela-
tion to its design parameters and benchmark it in quantitative and qualitative
comparison with ANR and other state-of-the-art methods. 1

4.1 Benchmarks

We adopt the testing benchmarks of the original ANR algorithm [1] and in
addition we use the 100 test images from the BSDS300 Berkeley dataset which
is widely used as a benchmark for various computer vision tasks including super-
resolution.

Training dataset We use the training set of images as proposed by Yang et
al. [4] and used, among others, by Timofte et al. [1] and by Zeyde et al. [11].

Set5 and Set14 ‘Set5’ [10] and ‘Set14’ [11] contain 5 and respectively 14 com-
monly used images for super-resolution evaluation. They are used in the same
settings as in [1]. In order to compare with ANR as fairly as possible, we conduct
most of our experiments related to the internal parameters of our A+ method
on Set14. This is similar to ANR, its internal parameters being first evaluated
on Set14.

B100 aka Berkeley Segmentation Dataset The Berkeley Segmentation
Dataset (BSDS300) [15] is a dataset of natural images which was originally de-
signed for image segmentation but has been widely used in many image restora-
tion approaches such as super-resolution and denoising to test performance [17].
We will use its 100 testing images (named here ‘B100’) to compare our method
more thoroughly to the closely related ANR and GR methods.

Compared Methods We compare with all the methods of [1] under the same
conditions as originally compared with ANR. Where applicable, we use a shared
sparse dictionary among the methods, or at least the methods use similar sized
dictionaries and share the training material, which is the same from [16, 11, 1].
The methods are as follows: NE+LS (Neighbor Embedding with Least Squares),
NE+LLE (Neighbor Embedding with Locally Linear Embedding, similar to
Chang et al. [9]), NE+NNLS (Neighbor Embedding with Non-Negative Least
Squares, similar to Bevilacqua et al. [10]), GR (Global Regression) and ANR
(Anchored Neighborhood Regression) of Timofte et al. [1]; the sparse coding
method of Yang et al. [16], the efficient sparse coding method of Zeyde et al. [11],
and the Simple Functions (SF) method of Yang and Yang [12]. In addition we
briefly report to the very recent Convolutional Neural Network method (SR-
CNN) of Dong et al. [18] which uses the same benchmark as us (training data,
Set5, Set14, as in [1]).

1 All the codes are publicly available at: http://www.vision.ee.ethz.ch/∼timofter/

A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution 9

2 4 8 16 32 64 128 256 512 1024 2048 4096
27.5

27.7

27.9

28.1

28.3

28.5

28.7

28.9

29.1

29.3

Dictionary size

P
S

N
R

 (
d

B
)

bicubic

Zeyde et al.

GR

ANR

A+

2 4 8 16 32 64 128 256 512 1024 2048 4096
27.5

27.7

27.9

28.1

28.3

28.5

28.7

28.9

29.1

29.3

Neighborhood size

P
S

N
R

 (
d

B
)

bicubic

Zeyde et al.

GR

ANR

A+

(a) (b)

2 4 8 16 32 64 128 256 512 1024 2048 4096
10

−3

10
−2

10
−1

10
0

10
1

Dictionary size

E
n

c
o

d
in

g
 t

im
e

 (
s
)

bicubic

Zeyde et al.

GR

ANR

A+

10
4

10
5

10
6

10
7

28.4

28.5

28.6

28.7

28.8

28.9

29

29.1

29.2

Number of mined training samples
P

S
N

R
 (

d
B

)

A+ (1024 regressors)

A+ (256 regressors)

A+ (64 regressors)

A+ (8 regressors)

ANR

(c) (d)

Fig. 2. Parameters influence on performance on average on Set14. (a) Dic-
tionary size for A+, ANR, GR, and Zeyde et al. versus PSNR; (b) Neighborhood size
for A+ and ANR versus PSNR, with dictionary size fixed to 1024; GR, Zeyde et al.
and Bicubic interpolation are provided for reference. (c) Dictionary size for A+, ANR,
GR, and Zeyde et al. versus encoding time; Bicubic is for reference. (d) Number of
mined training samples versus PSNR for A+ with different number of regressors (aka
dictionary size); ANR with a dictionary of 1024 is provided for reference.

Features We use the same LR patch features as Zeyde et al. [11] and Timofte et
al. [1]. Therefore, we refer the reader to their original works for a discussion about
features.

4.2 Parameters

In this subsection we analyze the main parameters of our proposed method, and
at the same time compare on similar settings with other methods, especially
with ANR since it is the closest related method. The standard settings we use
are upscaling factor ×3, 5000000 training samples of LR and HR patches, a
dictionary size of 1024, and a neighborhood size of 2048 training samples for
A+ and 40 atoms for ANR, or the best or common parameters for the other
methods as reported in their respective original works. Fig. 2 depicts the most
relevant results of the parameter settings.

Dictionaries There is a whole discussion concerning what are the best dic-
tionaries of pairs of LR and HR patches (or pair samples hereafter). Some NE
methods prefer to keep all the training samples, leaving the task of sublinear
retrieval of relevant neighboring samples to a well-chosen data structuring. The

10 Radu Timofte, Vincent De Smet, Luc Van Gool

sparse coding methods, the recent NE methods (SF, ANR) and the parameter
study of Timofte et al. [1] argue that learning smaller dictionaries is beneficial,
greatly reducing the search complexity and even improving in speed or quality.
We adhere to the setup from [1] and we vary the size of the learned dictionary
from 2 up to 4096 atoms. The training pool of samples extracted from the same
training images as used also in [1] or [16] is in the order of 0.5 million. The re-
sults are depicted in the Fig. 2 (a) for quantitative Peak Signal-to-Noise Ratios
(PSNRs) and (c) for encoding time. We refer the reader to [1] for a study about
NE+LS, NE+LLE and NE+NNLS. We focus mainly on ANR (with a neigh-
borhood size of 40 atoms) and A+ (with a neighborhood size of 2048 samples),
and provide results also for bicubic interpolation, Zeyde et al. and GR as com-
parison. Both A+ and ANR have the same time complexity, the running times
are almost identical for the same learned dictionary size. The difference is in the
quantitative PSNR performance, where A+ is clearly ahead of ANR. In fact A+
is ahead of all compared methods regardless of the dictionary size.

Neighborhoods The size of the neighborhood that is used by the neighboring
embedding methods to compute the regression of the LR input patch in order
to reconstruct the HR output patch is usually a critical parameter of most NE
methods. Timofte et al. [1] already show how sensitive this parameter is for
NE+LS, NE+NNLS or NE+LLE. In the experiment from Fig. 2 (b) we com-
pare the behavior of A+ and ANR over the same dictionary, while varying the
neighborhood size. Note that while A+ forms the neighborhoods from the closest
training LR patches in Euclidean distance, ANR builds the local neighborhoods
from the other atoms in the learned dictionary using the correlation as similarity
measure. As we see, ANR peaks at a neighborhood size of 40, while our A+ faces
a plateau above 1024. We had 5 million samples in the training pool, and this
is a possible explanation why A+ with 1024 atoms faces a plateau above 1024
neighborhood sizes, as we will investigate in the next subsection. From now on,
unless mentioned otherwise, A+ will always use neighborhoods of size 2048 for
each of its atoms.

Training samples and dictionary size In the previous subsection we found
that A+ seems to face a plateau in relation with the available pool of training
samples from where it can pick its neighborhoods. In Fig. 2 (d) we present the
results of an experiment showing the relation between the amount of training
samples mined from the training set of images and the dictionary size of our
method. Since for each atom we learn one regressor from its neighborhood, we
decide to evaluate A+ with 8, 64, 256, and 1024 regressors respectively (or
in other words, its dictionary size or number of anchoring points/atoms). For
reference we also plot the ANR result with a 1024 dictionary and its optimal
neighborhood size of 40 atoms. The result of the experiment is relevant in that
we can see that the larger we make the training pool, the better the performance
of the regressors becomes, even if the number of regressors is very small. This is
due to the fact that by having a larger training pool of samples, the density of

A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution 11

Table 1. PSNR and running time for upscaling factor ×3 for Set14. All methods are
trained on the same images and, with the exception of Yang et al. (1022 atoms), share a
dictionary of 1024 atoms; A+ trained with 5000000 samples. A+ and ANR are 5 times
faster than Zeyde et al. If we consider only the encoding time, our A+ takes 0.23s on
average, being 14 times faster than Zeyde et al., and 10 times faster than NE+LS.

Set14 Bicubic Yang et al. [16] Zeyde et al. [11] GR [1] ANR [1] NE+LS NE+NNLS NE+LLE A+
images PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

baboon 23.2 0.0 23.5 138.7 23.5 4.1 23.5 0.5 23.6 0.7 23.5 2.8 23.5 28.1 23.6 5.4 23.6 0.7
barbara 26.2 0.0 26.4 146.6 26.8 7.4 26.8 1.0 26.7 1.4 26.7 5.3 26.7 48.7 26.7 9.4 26.5 1.3
bridge 24.4 0.0 24.8 169.5 25.0 4.3 24.9 0.5 25.0 0.8 24.9 3.1 24.9 30.2 25.0 5.8 25.2 0.8
coastguard 26.6 0.0 27.0 39.9 27.1 1.7 27.0 0.2 27.1 0.3 27.0 1.1 27.0 12.0 27.1 2.2 27.3 0.3
comic 23.1 0.0 23.9 59.8 24.0 1.5 23.8 0.2 24.0 0.3 23.9 1.0 23.8 10.3 24.0 1.9 24.4 0.3
face 32.8 0.0 33.1 22.6 33.5 1.3 33.5 0.1 33.6 0.2 33.5 0.9 33.5 8.4 33.6 1.6 33.8 0.2
flowers 27.2 0.0 28.2 88.6 28.4 3.1 28.1 0.4 28.5 0.5 28.3 2.1 28.2 21.4 28.4 4.0 29.0 0.6
foreman 31.2 0.0 32.0 30.4 33.2 1.7 32.3 0.2 33.2 0.3 33.2 1.2 32.9 11.5 33.2 2.1 34.3 0.3
lenna 31.7 0.0 32.6 76.7 33.0 4.4 32.6 0.6 33.1 0.8 33.0 3.0 32.8 30.5 33.0 5.8 33.5 0.8
man 27.0 0.0 27.8 120.9 27.9 4.2 27.6 0.5 27.9 0.8 27.9 3.0 27.7 28.9 27.9 5.9 28.3 0.8
monarch 29.4 0.0 30.7 128.0 31.1 6.5 30.4 0.8 31.1 1.2 30.9 4.7 30.8 46.1 30.9 8.6 32.1 1.2
pepper 32.4 0.0 33.3 78.9 34.1 4.3 33.2 0.5 33.8 0.7 33.9 2.9 33.6 28.8 33.8 5.8 34.7 0.8
ppt3 23.7 0.0 25.0 106.6 25.2 5.4 24.6 0.7 25.0 1.1 25.1 4.0 24.8 35.3 24.9 7.6 26.1 1.0
zebra 26.6 0.0 28.0 122.9 28.5 3.7 27.9 0.4 28.4 0.7 28.3 2.6 28.1 25.7 28.3 4.9 29.0 0.7

average 27.54 0.01 28.31 95.00 28.67 3.83 28.31 0.47 28.65 0.69 28.59 2.68 28.44 26.15 28.60 5.08 29.13 0.69
avg.encoding 0.01 ∼90.00 3.37 0.01 0.23 2.22 25.69 4.62 0.23

points favorably placed near the anchoring atoms increases and the regression
can better fit a manifold in the proximity of the unit hypersphere of the atoms.
Nevertheless, for better performance the neighborhood size (here fixed at 2048)
should be adjusted as well to the number of mined training samples. And this
especially when the number of training samples is much larger or smaller than
the number of regressors times the neighborhood size. Our assumption of the
space spanned by anchored neighborhoods on atoms on the unit hypersphere
seems to hold.

Our experiment, which we stopped after harvesting 5 million training sam-
ples, shows surprisingly that we are able to learn sufficiently accurate as low as 8
regressors to the high resolution space to get close to the 1024 regressors used in
the ANR method, but algorithmically we are up to 128× faster! Also, we reach
29.13 dB on Set14 with 1024 regressors and 5 million extracted samples (with
0.5 million samples we get only 28.97 dB).

Noteworthy is that the performance of A+ does not seem to saturate with
the number of extracted samples, which allows better performance at the price of
increasing the training time which is only about 15 minutes for 1024 regressors
and 5 millions extracted patches on our tested setup (Intel i7-4770K with 16
GBytes of RAM).

4.3 Performance

In order to assess the quality of our proposed A+ method, we tested it on 3
datasets (Set5, Set14, B100) for 3 upscaling factors (×2, ×3, ×4). We report
quantitative PSNR results, as well as running times for our bank of methods
run under the same testing conditions. In Table 3 we summarize the quantitative
results, while in Fig. 3, 4, and 5 we provide a visual assessment on three images. 2

2 For more results: http://www.vision.ee.ethz.ch/∼timofter/

12 Radu Timofte, Vincent De Smet, Luc Van Gool

Reference / PSNR Bicubic / 32.39 dB Yang et al. / 33.32 dB Zeyde et al. / 34.07 dB

SF / 33.30 dB NE+LLE / 33.80 dB ANR / 33.82 dB A+ / 34.74 dB

Fig. 3. ‘Pepper’ image from Set14 with upscaling ×3.

Quality Timofte et al. [1] show that most of the current neighbor embedding
methods are able to reach comparable performance quality for the right sets
of parameters, such as dictionary size, training choices, features, and internal
regulatory parameters. The critical difference among most methods (including
neighborhood embedding, sparse coding methods, and not only these) is the
time complexity and the running time during testing (and training). In Table 1
we evaluate on the same trained dictionary, with their best parameters, a set of
methods (as proposed in [1]) on Set14 dataset. Yang et al. [16] uses a different
dictionary, but of comparable size (1022 vs 1024) and learned on the same train-
ing images. In Table 1 we show results for upscaling factor ×3, and in Table 2 we
report results for ×2, ×3, and ×4 upscaling factors. As repeatedly shown, our
proposed method is the best method quality-wise, improving on average 0.26dB
(B100,×4) up to 0.72dB (Set5,×2) over the next top methods, Zeyde et al. or
ANR. The very recent SRCNN method [18] is 0.2dB behind A+ on Set5 and
more than 0.13dB on Set14 according to its published results. At the same time,
A+ is very efficient, has the time complexity of ANR and except for bicubic
interpolation and the Global Regression (GR) method [1], which are clearly out-
performed in quality, A+ is the fastest method for a given target in quality of
the SR result (see Fig. 2 (a) and (c) for PSNR and time vs. dictionary size for
different methods). In Fig. 3, 4, and 5 we show how A+ has a visual quality
comparable or superior to the other compared methods on a couple of images.

Running Time The time complexity of A+ for encoding LR input patches to
HR output patches is linear in the number of input image patches and linear in
the number of anchoring atoms. One can easily get sub-linear time complexity
in the number of atoms by using any popular search structure, since we just
need to retrieve the closest anchor for a specific patch, followed by a (fixed
time cost) projection to the HR patch. ANR shares the time complexity (see

A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution 13

Table 2. PSNR and running time for upscaling factors ×2, ×3 and ×4 for Set5. All
methods are trained on the same images and share a dictionary of 1024 atoms; A+
trained with 5000000 samples. For upscaling factor 3, A+ and ANR are 5 times faster
than Zeyde et al. 120 times faster than Yang et al. and 4 times faster than NE+LS.

Set5 Bicubic Yang et al. [16] Zeyde et al. [11] GR [1] ANR [1] NE+LS NE+NNLS NE+LLE A+
images Scale PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

baby x2 37.1 0.0 – – 38.2 9.9 38.3 0.8 38.4 1.3 38.1 6.5 38.0 71.1 38.3 12.9 38.5 1.3
bird x2 36.8 0.0 – – 39.9 3.0 39.0 0.2 40.0 0.4 39.9 2.0 39.4 22.0 40.0 3.9 41.1 0.4
butterfly x2 27.4 0.0 – – 30.6 2.4 29.1 0.2 30.5 0.3 30.4 1.7 30.0 17.9 30.4 3.2 32.0 0.3
head x2 34.9 0.0 – – 35.6 2.9 35.6 0.2 35.7 0.4 35.5 1.9 35.5 20.8 35.6 3.8 35.8 0.4
woman x2 32.1 0.0 – – 34.5 2.9 33.7 0.2 34.5 0.4 34.3 2.1 34.2 21.0 34.5 3.8 35.3 0.4

average x2 33.66 0.00 – – 35.78 4.25 35.13 0.33 35.83 0.54 35.66 2.83 35.43 30.56 35.77 5.51 36.55 0.55

baby x3 33.9 0.0 34.3 89.6 35.1 4.3 34.9 0.6 35.1 0.8 35.0 3.1 34.8 29.9 35.1 5.8 35.2 0.8
bird x3 32.6 0.0 34.1 35.4 34.6 1.3 33.9 0.2 34.6 0.3 34.4 0.9 34.3 9.1 34.6 1.8 35.5 0.2
butterfly x3 24.0 0.0 25.6 32.9 25.9 1.1 25.0 0.1 25.9 0.2 25.8 0.7 25.6 7.0 25.8 1.4 27.2 0.2
head x3 32.9 0.0 33.2 25.3 33.6 1.3 33.5 0.2 33.6 0.2 33.5 0.9 33.5 8.4 33.6 1.7 33.8 0.2
woman x3 28.6 0.0 29.9 31.1 30.4 1.3 29.7 0.2 30.3 0.2 30.2 0.9 29.9 8.4 30.2 1.7 31.2 0.2

average x3 30.39 0.00 31.42 42.86 31.90 1.86 31.41 0.24 31.92 0.34 31.78 1.29 31.60 12.56 31.84 2.46 32.59 0.35

baby x4 31.8 0.0 – – 33.1 2.7 32.8 0.4 33.0 0.6 32.9 1.9 32.8 16.5 33.0 3.5 33.3 0.6
bird x4 30.2 0.0 – – 31.7 0.8 31.3 0.1 31.8 0.2 31.6 0.6 31.5 4.9 31.7 1.0 32.5 0.2
butterfly x4 22.1 0.0 – – 23.6 0.6 23.1 0.1 23.5 0.1 23.4 0.4 23.3 3.8 23.4 0.8 24.4 0.1
head x4 31.6 0.0 – – 32.2 0.7 32.1 0.1 32.3 0.2 32.2 0.5 32.1 4.7 32.2 1.0 32.5 0.2
woman x4 26.5 0.0 – – 27.9 0.7 27.4 0.1 27.8 0.2 27.6 0.5 27.6 4.6 27.7 1.0 28.6 0.2

average x4 28.42 0.00 – – 29.69 1.12 29.34 0.17 29.69 0.25 29.55 0.78 29.47 6.89 29.61 1.45 30.28 0.24

Reference / PSNR Bicubic / 24.04 dB Yang et al. / 25.58 dB Zeyde et al. / 25.94 dB

SF / 24.40 dB NE+LLE / 25.75 dB ANR / 25.90 dB A+ / 27.24 dB

Fig. 4. ‘Butterfly’ image from Set5 with upscaling ×3.

Table 3. PSNR and running time for upscaling factors ×2, ×3 and ×4 for Set14, Set5,
and B100. All methods are trained on the same images and share a dictionary of 1024
atoms, except for SF, which is trained with 1024 clusters and corresponding functions.

Bicubic SF [12] Zeyde et al. [11] GR [1] ANR [1] NE+LS NE+NNLS NE+LLE A+
Dataset Scale PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

x2 33.66 0.00 35.63 20.46 35.78 4.25 35.13 0.33 35.83 0.54 35.66 2.83 35.43 30.56 35.77 5.51 36.55 0.55
Set5 x3 30.39 0.00 31.27 11.89 31.90 1.86 31.41 0.24 31.92 0.34 31.78 1.29 31.60 12.56 31.84 2.46 32.59 0.35

x4 28.42 0.00 28.94 6.42 29.69 1.12 29.34 0.17 29.69 0.25 29.55 0.78 29.47 6.89 29.61 1.45 30.29 0.24

x2 30.23 0.00 31.04 39.11 31.81 8.58 31.36 0.73 31.80 1.15 31.69 5.69 31.55 60.53 31.76 11.27 32.28 1.20
Set14 x3 27.54 0.00 28.20 24.59 28.67 3.83 28.31 0.47 28.65 0.69 28.59 2.68 28.44 26.15 28.60 5.08 29.13 0.69

x4 26.00 0.00 26.25 11.99 26.88 2.42 26.60 0.42 26.85 0.57 26.81 1.68 26.72 14.49 26.81 3.07 27.33 0.56

x2 29.32 0.00 30.35 10.15 30.40 5.80 30.23 0.45 30.44 0.73 30.36 3.79 30.27 39.83 30.41 7.50 30.78 0.76
B100 x3 27.15 0.00 27.76 4.94 27.87 2.54 27.70 0.31 27.89 0.45 27.83 1.81 27.73 17.57 27.85 3.47 28.18 0.46

x4 25.92 0.00 26.19 2.75 26.51 1.53 26.37 0.25 26.51 0.35 26.45 1.09 26.41 2.04 26.47 2.01 26.77 0.35

14 Radu Timofte, Vincent De Smet, Luc Van Gool

Reference / PSNR Bicubic / 32.58 dB Yang et al. / 34.11 dB Zeyde et al. / 34.57 dB

SF / 33.98 dB NE+LLE / 34.56 dB ANR / 34.60 dB A+ / 35.54 dB

Fig. 5. ‘Bird’ image from Set5 with upscaling ×3.

Fig. 2), but requires much larger dictionaries of anchoring points for comparable
performance, which makes it considerably slower as shown in our experiments.
A+ is order(s) of magnitude faster than another successful efficient sparse coding
approach, Zeyde et al. [11]. At the same time, A+ is 0.2dB up to 0.7dB better
at any given dictionary size. With as few as 16 atoms A+ outperforms ANR and
Zeyde et al. with dictionaries of 2048 atoms. This corresponds to an algorithmic
speed up of 128 over ANR for the same quality level.

5 Conclusions

We proposed an enhanced highly efficient example-based super-resolution method,
which we named Adjusted Anchored Neighborhood Regression, or shortly – A+.
A+ succeeds in substantially surpassing the shortcomings of its predecessors such
as ANR or SF. We proposed a different interpretation of the LR space, as a joint
space of subspaces spanned by anchoring points and their closed neighborhood
of prior samples. While the anchoring points are the unit l2-norm atoms of a
sparse dictionary, the characterizing neighborhood is formed by mined samples
from the training samples. For each such atom and neighborhood a regression is
learned offline and at test time this is applied to the correlated low resolution
samples to super-resolve it. A+ is shown on standard benchmarks to improve
0.2dB up to 0.7dB in performance over state-of-the-art methods such as ANR
or SF. At the same time it is indisputably the fastest method. It has the lowest
time complexity and uses orders of magnitude less anchor points than ANR or
SF for substantially better performance. As future work we plan to explore A+
for video processing and other real-time critical applications.

Acknowledgement. This work was partly supported by the ETH General
Founding (OK) and the Flemish iMinds framework.

A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution 15

References

1. Timofte, R., De Smet, V., Van Gool, L.: Anchored Neighborhood Regression for
Fast Example-Based Super Resolution. ICCV (2013) 1920–1927

2. Sun, J., Xu, Z., Shum, H.-Y.: Image super-resolution using gradient profile prior.
CVPR (2008) 1–8

3. Glasner, D., Bagon, S., Irani, M.: Super-Resolution from a Single Image. ICCV
(2009) 349–356

4. Yang, J., Wright, J., Huang, T. S., Ma Y.: Image super-resolution as sparse repre-
sentation of raw image patches. CVPR (2008) 1–8

5. Sun, J., Zhu, J., Tappen, M. F.: Context-constrained hallucination for image super-
resolution. CVPR (2010) 231–238

6. Michaeli, T., Irani, M.: Nonparametric Blind Super-resolution. ICCV (2013) 945–
952

7. Efrat, N., Glasner, D., Apartsin, A., Nadler, B., Levin, A.: Accurate Blur Models
vs. Image Priors in Single Image Super-Resolution. ICCV (2013) 2832–2839

8. Freeman, W. T., Pasztor, E. C., Carmichael, O. T.: Learning low-level vision. IJCV
40(1) (2000) 25–47

9. Chang, H., Yeung, D.-Y., Xiong, Y.: Super-Resolution through Neighbor Embed-
ding. CVPR (2004) 275–282

10. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi Morel, M.-L.: Low-Complexity
Single-Image Super-Resolution based on Nonnegative Neighbor Embedding. BMVC
(2012) 1–10

11. Zeyde, R., Elad, M., Protter, M.: On Single Image Scale-Up Using Sparse-
Representations. Curves and Surfaces (2012) 711–730

12. Yang, C.-Y., Yang, M.-H.: Fast Direct Super-Resolution by Simple Functions.
ICCV (2013) 561–568

13. Roweis, S., Lawrence, S.: Nonlinear dimensionality reduction by locally linear em-
bedding. Science (2000) 2323–2326

14. Timofte, R., Van Gool, L.: Adaptive and weighted collaborative representations
for image classification. Pattern Recognition Letters 43 (2014) 127–135

15. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented
Natural Images and its Application to Evaluating Segmentation Algorithms and
Measuring Ecological Statistics. ICCV (2001) 416–423

16. Yang, J., Wright, J., Huang, T. S., Ma, Y.: Image Super-Resolution Via Sparse
Representation. IEEE Trans. on Image Processing 19(11) (2010) 2861–2873

17. De Smet, V., Namboodiri, V. P., Van Gool, L. J.: Nonuniform image patch exem-
plars for low level vision. WACV (2013) 23–30

18. Dong, C., Loy, C. C., He, K., Tang, X.: Learning a Deep Convolutional Network
for Image Super-Resolution. ECCV (2014) 184–199

