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Abstract

We advocate the idea of a training-free texture classification scheme. This we demon-
strate not only for traditional texture benchmarks, but also for the identification of ma-
terials and of the writers of musical scores. State-of-the-art methods operate using local
descriptors, their intermediate representation over trained dictionaries, and classifiers.
For the first two steps, we work with pooled local Gaussian derivative filters and a small
dictionary not obtained through training, resp. Moreover, we build a multi-level repre-
sentation similar to a spatial pyramid which captures region-level information. An extra
step robustifies the final representation by means of comparative reasoning. As to the
classification step, we achieve robust results using nearest neighbor classification, and
state-of-the-art results with a collaborative strategy. Also these classifiers need no train-
ing.

To the best of our knowledge, the proposed system yields top results on five stan-
dard benchmarks: 99.4% for CUReT, 97.3% for Brodatz, 99.5% for UMD, 99.4% for
KTHTIPS, and 99% for UIUC. We significantly improve the state-of-the-art for three
other benchmarks: KTHTIPS2b - 66.3% (from 58.1%), CVC-MUSCIMA - 99.8% (from
77.0%), and FMD - 55.8% (from 54%).

1 Introduction
Despite the fact that texture classification has received quite some attention, effective, highly
accurate, and robust texture classification is still lacking. Some of the reasons are: the enor-
mous variety of natural texture types, large intra-class variations coming from (non-)linear
image projections, color changes due to varying illumination, corruptions like occlusion or
texture blending, high demands on the hardware resources, and a need for systems that are
easy to deploy [13, 19].

Standard texture classification systems aim at i) constructing a rich representation of the
image and ii) providing an appropriate classification strategy. The representation typically
entails local (texture) descriptors, similarity measures, aggregating strategies, and intermedi-
ate and global (image level) descriptors. The classification strategy usually adapts its metric
to the representation and aims at fixing its flaws (e.g. growing the training sample pool by
artificially generated, distorted samples, for reasons of robustness). Class models are then
built using state-of-the-art classifiers.
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In the literature, the local texture descriptors are extracted over a sparse set of inter-
est points [14], over a denser grid [13], or, more commonly, in every point in the im-
age [20, 23, 31, 32]. To describe these points, the most successful filter banks are the rotation
invariant basic image features (BIF) of [9] and MR8 of [32]. Alternatively, [14] uses mod-
ified SIFT and intensity domain SPIN images, [13] plain SIFT, [6, 20, 23] variants of LBP
descriptors, [31] a grayscale image patch for its Joint descriptor and an MRF representation;
[36] local fractals, and [18, 19] (sorted) random projections over small patches. Once the
local descriptor types are fixed, there are two common approaches to further encode them:
modeling images as histograms over a (learned) dictionary of features, or textons [32], or
as signatures [13, 14] of features. For introducing spatial information into the global image
descriptors, [15] proposes spatial pyramid matching (SPM) for a bag-of-words (BoW), an
extension over [14]. The most common choices for similarity measures are the χ2 statis-
tic [31], Bhattarcharyya distance [9], or Earth Mover’s Distance [14] in conjunction with
nearest neighbor classification. However, non-linear (kernel-based) SVMs proved to come
with superior performance.

In this paper we propose a training-free multi-level texture classification framework. It
combines the robustness and simplicity of local descriptors such as BIFs [9], layered, spatial
information embedding similar to SPM [15] or a set of regions as in [13], the power of
comparative reasoning [38], and state-of-the-art training-free classifiers [28]. The approach
aims at addressing most of the problems encountered in texture classification, and exhibits
the following advantages:

1) No need for training, and thus data independence. There is no need for learning a dic-
tionary for the local descriptors (such as BIFs [9]), the system performs robustly with a
fixed set of parameters on different textures, materials and handwritten score datasets.

2) Robustness to intra-class variations. The robustness is provided by the local descrip-
tors, the layered, robustified representation, and the classifiers.

3) Layered representation embedding spatial information. Spatial information proved crit-
ical for object classification [15], and so it is for textures.

4) Robustified representations by means of comparative reasoning. The power of com-
parative reasoning (WTA hash [38]) enhances and robustifies the representations by
adding resilience to perturbations in numeric values.

5) Fast sparse and/or collaborative classification. Lately, sparse and collaborative repre-
sentation based classifiers performed best at various tasks such as face recognition [34,
40] or traffic sign recognition [28].

2 Proposed Framework
2.1 Local Texture Descriptor (BIF)
In our quest for the best local texture descriptor we are guided by the reported performances,
dictionary size, the ease of training, complexity, and robustness to intra-class variance. We
chose Basic Image Features (BIF) [9, 22] as our descriptor. Other tempting candidates
are Local Binary Patterns (LBP) [23] and its derivations Extended LBP (ELBP) [20] and
LBP Histogram Fourier (LBP-FH) [6], and the recently proposed Binary Gabor Pattern
(BGP) [41], all taken at different scales.
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Figure 1: The scheme of our texture classification framework.

We briefly review BIF and its variants following closely the original work [9, 22]. Basic
Image Features “are defined by a partition of the filter-response space (jet space) of a set of
six Gaussian derivative (DtG) 2D filters” up to second order at some scale σ . Let {ci j ∈
R|∀(i, j) ∈ N×N, i + j ≤ 2} be the filter responses for the i-th derivative in x-direction
and the j-th in y-direction, and si j = σ i+ jci j their σ -scale normalizations. The jet space is
partitioned further into seven regions, or BIFs, corresponding to distinct types of local image
symmetry. Accordingly, the BIF scores and the assigned BIF type are represented by:

r = [εs00,2
√

s2
10 + s2

01,λ ,−λ ,(γ +λ )/
√

2,(γ−λ )/
√

2,γ], BIFcode = argmax
k∈{1,··· ,7}

{rk} (1)

where ε ∈R is a threshold determining which features are considered flat, λ = s20+s02, and

γ =
√
(s20− s02)2 +4s2

11.
By construction BIFs are rotation invariant. However, we can discretize orientations for

BIF codes 2,5,6, and 7 (cf. [22]). We compute the quantifiable orientation arctan( 2s11
s02−s20

) for
BIF codes 5,6,7 and take n discretized orientations, while for code 2, we take atan2(s01,s10)
with 2n discretized orientations. In this way, the resulting Oriented Basic Image Features
(oBIF) have 5n+3 codes. Here, and in the original work [22], n = 4.

Thus, for a single scale the BIF descriptor has a dictionary of 7, while oBIF’s dictionary
has 23 entries. To create a more discriminative descriptor, [9] combines the descriptors at
different scales. Empirically they found that the scale set σi ∈ {1,2,4,8} is a good choice
for BIFs, while for oBIFs [22], the number of scales is reduced to typically σi ∈ {1,4}. The
multi-scale representations were called BIF-columns and oBIF-columns, respectively.

In practice, the regions where the flatness score (the first entry in the BIF dictionary)
dominates, are discarded as non-informative, c00 is fixed, and ε is tuned. However, we fix ε

to a small value in all our experiments, ε = 10−4. Taking the remaining dictionary entries,
BIF with p scales will generate 6p distinct dictionary entries (for p= 4 there are 1296), while
oBIF with p scales will generate 22p distinct dictionary entries (for p = 2 there are 484 oBIF
entries). Regions are then described with BIF and oBIF histograms, of 6p and 22p bins, resp.

2.2 Multi-Level Pooled Representation (SPM, BoR)
The standard spatial pyramid matching (SPM) scheme has three or four pyramid levels with
{1× 1,2× 2,4× 4} or {1× 1,2× 2,4× 4,8× 8} pooling regions [15]. We add levels as
long as the cell region size allows for meaningful histograms. The advantage of SPM is
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that it brings spatial information into the image representation, while the downside is that it
increases its size with an order equal to the total number of regions/cells. Since our features
provide single codes per each image point, we consider as pooling method for a region the
sum pooling (thus cumulating the histogram statistics).

Another recently proposed approach [13] uses multi-levels, similarly to SPM, for creat-
ing orderless region parts, allowing for overlap. Moreover, the regions are not concatenated
into an image descriptor as in SPM but taken as a set of regions, called here Bag-of-Regions
(BoR), sharing the same image label. The advantage of this approach is that it covers a much
larger variance in scale, translation, rotation, viewpoint, illumination by enlarging the train-
ing pool. For the test image represented as BoR, the classification score is computed for each
class and each region. At image level (or BoR level) the label is taken as the class with the
best cumulative score over the BoR. For this multi-level BoR case we consider the same sum
pooling strategies as in the case of SPM. The disadvantage of the method is that increases
the size of the training pool and also requires a number of classification operations increased
with an order equal to the total number of regions from BoR.

2.3 Robustified Representation - (WTA-hash)
Recently, the power of comparative reasoning [38] has been shown and a Winner Take All
(WTA) hash technique proposed. WTA-hash is a sparse embedding method transforming the
input feature space into binary codes. In the resulting space the Hamming distance closely
correlates with rank similarity measures. The rank correlation measures are resilient to per-
turbations in numeric values and WTA-hash brings perturbation robustness to the original
feature space representation. We use it to robustify the regions representations to numerical
perturbations.

2.4 Sparse and Collaborative Classification - (SRC, CRC, INNC)
We pick classifiers that do not require parameter tuning for different datasets. The Sparse
Representation Classifier (SRC) based on l1-regularized least squares decomposition [34]
and the Collaborative Representation Classifier (CRC) based on l2-regularized least squares
decomposition [40], that both define the state-of-the-art in face recognition. Whereas SRC
usually is a slow method optimizing for each new input sample, CRC solves a ridge regres-
sion, for which one can precompute a projection matrix, such that for each new input sample
the main operation is just a linear projection. Therefore, and because CRC tends to have
on par performance with SRC for high-dimensional data, CRC is attractive [29]. The re-
cently proposed Iterative Nearest Neighbors Classifier (INNC) [28], which is based on the
fast approximated solution of an l1-constrained least square decomposition, is another clas-
sifier equaling the performance of SRC and CRC, but at a much lower computational cost.
However, INNC does not scale well with high-dimensional data.

A note about CRC is due here [29]. When the number of data samples exceeds data
dimensionality, the computation of the projection matrix can be troublesome. A solution
comes from the Moore-Penrose pseudoinverse [25]: one can work on the transposed data in
order to compute the pseudoinverse. This allows CRC to scale well with either very large
datasets or a very high dimensionality of the data. According the experiments from [28],
working on a neighborhood of fixed size and not on the full data decreases the performance
for CRC, as well as for SRC or INNC. Instead of resorting to neighborhoods [13], we use
the pseudoinverse.
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Table 1: Summary of texture, material, and score datasets used in our experiments.
Dataset Dataset Dataset Image Controlled Scale Significant Number Sample Samples Samples

Notation Type Rotation Illumination Variation Viewpoint Classes Size per Class in Total
CUReT [2, 8, 32] DC texture X X 61 200×200 92 5612
UIUC [3, 14] DUIUC texture X X X 25 640×480 40 1000
UMD [4, 36] DUMD texture X X X 25 640×480 40 1000
Brodatz [1, 14, 39] DB texture 111 213×213 9 999
KTHTIPS [8, 24] DKT texture X X 10 200×200 81 810
KTHTIPS2b [8, 24] DKT 2b texture X X X 11 200×200 4(×9×12) 4752
FMD [17, 26] DFMD material X X X 10 512×384 100 1000
CVCMUSCIMA [10, 11] DCM handwritten scores 50 ∼2000×2000 20 1000

3 Experiments
3.1 Implementation details
The local descriptors we use are the BIFs and oBIFs (see Section 2.1). Our DtG filters use a
7×7 image patches for the reference scale σ = 1, since outside the filter values are negligi-
ble. The difficulty of obtaining filter responses at the borders is a known issue [9]. Authors
have simply dropped filters falling outside or used circular padding [9]. We use a mirrored
texture padding. Instead of adapting the basic DtG filters to a different scale, we prefer to
rescale the image and run with the same filter bank with 7× 7 image patch support. Since
we work with scales larger than σ = 1, this approximation saves considerable computation
time. After extracting the BIFs/oBIFs in the scaled image, the compound/combined descrip-
tors are built based on the correspondence to the points at the reference scale σ = 1. Besides
these approximations, we prefer to not tune the flatness threshold but fix it to the small value
ε = 10−4.

The classifiers we use are to a large extent training-free, i.e. do not change their param-
eters for different datasets. The classifiers used are the standard nearest neighbor classifier
(NNC), the nearest mean class classifier (NMC), the sparse representation-based classifier
(SRC) [34], the collaborative representation-based classifier with regularized least squares
(CRC) [40], and the iterative nearest neighbor classifier (INNC) [28]. CRC has an algebraic
solution and in practice can be much faster than the SRC solver (here we use the feature sign
algorithm [16]), while INNC provides on par performance especially for low-dimensional
data with an even lower computational time. If not mentioned otherwise, the regulatory pa-
rameter λ is set to 0.001 for CRC, 0.05 for SRC, and 0.05 for INNC, which provide good
trade-off performances in the literature [28, 34, 40].

Table 1 gives an overview of the benchmarks that we used. These comprise texture
datasets covering various artificial and natural settings. In addition, we report on challenging
datasets for materials and handwritten musical scores. For each benchmark we give the
performance for the most common split of the data into training and testing parts. In Table 2,
the number of training samples as used per each class for each dataset is given in brackets.
If not mentioned otherwise, our result is the mean of the results obtained for 100 random
generated partitions of a fixed size, as used in the literature. We always operate on the
grayscale images. Also, the histogram descriptors are l1 normalized and square-rooted prior
to classification. This provides usually on par improvements with WTA-hash and binary
rankings for NNC classification.

3.2 Texture Classification
We evaluate the performance of our classification framework on six public datasets: CUReT [2,
8, 32], Brodatz [1, 14, 39], KTHTIPS [8, 24], KTHTIPS2b [8, 24], UIUC [3, 14], and
UMD [4, 36]. The main characteristics of these datasets are provided in Table 1.

CUReT is one of the most used texture benchmarks. As in previous works we use a
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Figure 2: Comparison with state-of-the-art methods on KTHTIPS2b as reported by [20].
Note that Extended LBP (ELBP) [20] is evaluated using NN classifier.

subset of the original dataset, containing 92 samples per each of the 61 classes [32]. With
NNC, we achieve 96.5%, 97.2%, and 97.4% with oBIFs at one (σ = 1), two (σ ∈ {1,4}),
and three scales (σ ∈ {1,4,8}), resp. With SRC, these go up to 97.5%, 98.7%, and 98.9%
for the same settings. Rotations are present in CUReT and, as expected, using BIFs (meant
for rotation invariance) at four scales (σ ∈ {1,2,4,8}) provides us with a better performance:
98.0 with NNC (similar with the 98.6% performance reported in [9] for a multi-scaled clas-
sification strategy), 96.70% with CRC, 99.0% with SRC, and 98.9% with INNC. The BIF
results already are on par and better than all reported results (Table 2) except for the Sorted
Random Projections (SRP) approach [19] with 99.37%, which uses learning, however. If
we add spatial information into the image descriptor by means of BoRs and use a spatial
pyramid with 3 levels (1x1,2x2,3x3 or a total of 14 cells/regions) on top of BIFs we obtain
99.42% and 99.23% with CRC and NNC, resp.

Brodatz contains 111 texture images that are used to extract 9 samples as non-overlapping
regions for each original texture image. For BIFs (σ ∈ {1,2,3,4}) we reach 91.8% with
NNC, 93.6% with SRC, 94.1% with INNC, and 76.8% with CRC. These results are slightly
worse than the SIFT-based set of regions approach [13] with 96.61% and the SRP ap-
proach [19] with 97.16% (Table 2). Using Oriented BIFs (σ ∈ {1,4}) we get slightly better
results than with BIFs: 91.9% with NNC and 94.5% with INNC. Applying BoRs with 3
levels (1x1,2x2,3x3) for BIFs (σ ∈ {1,2,3,4}) brings us to top results: 95.5% with NNC
and 96.5% with CRC, while with oBIFs (σ ∈ {1,4}) we obtain 96.37%-NNC and 97.26%.

KTHTIPS benchmarks scale variation handling in CUReT textures. For BIFs (σ ∈
{1,2,4,8}) we obtain 97.5% with NNC (behind 98.50% for BIFs with the multi-scale clas-
sification strategy of [9]), 93.4% with CRC, 98.6% with SRC, and 98.7% with INNC. Allow-
ing for orientation variance in the local descriptor is beneficial since with oBIFs (σ ∈ {1,4})
the performance achieved is: 97.7% with NNC, 98.4% with CRC, 99.35% with SRC, and
99.1% with INNC. 99.35% is better than the top SRP result of 99.32% [19](Table 2).

UIUC has 25 classes with images under uncontrolled illumination. BIFs (σ ∈{1,2,4,8})
yield the best reported performance with a multi-scale classification strategy explicitly deal-
ing with scale changes [9]. These authors suggest potential improvements by using trained
classifiers such as SVMs. We, on the contrary, propose training-free classifiers for better
performance and do not explicitly deal with scale mismatch (except where we use the BoR
strategy). For BIFs (σ ∈ {1,2,4,8}) we get 97.1% with NNC, 97.7% with CRC, 99.0% with
SRC, and 98.6% with INNC. In this setting we already have a marginal improvement over
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Table 2: Comparison of the best classification results for our approaches with those achieved
by 22 state-of-the-art methods. The results are original, except for those reported in [39](*),
in [20] (**), and in [41](***). In brackets is the number of training samples.

DC(46) DB(3) DKT (41) DUIUC(20) DUMD(20) DKT 2b(1) DCM(10) DFMD(50)
1. Our Results 99.42 97.26 99.35 99.01 99.54 66.26 99.80 55.78
2. VZ-MR8 [32] 97.43 46.30(**)
3. VZ-Joint [33] 98.03 92.90(*) 92.40(*) 97.83 53.30(**)
4. Caputo et al. [8] 98.46 95.00(*) 94.80(*) 92.00(*)
5. Lezebnik et al. [14] 72.50(*) 88.15 91.30(*) 96.03
6. Mellor et al. [21] 89.71
7. J.Zhang et al. [39] 95.30 95.90 96.10 98.70
8. Varma and Ray [30] 98.76
9. Crosier and Griffin [9] 98.60 98.50 98.80
10. Xu et al.-MFS [36] 92.74 93.93
11. Xu et al.-OTF [35] 97.40 98.49
12. Xu et al.-WMFS [37] 98.60 98.68
13. L.Liu et al.-CS [18] 98.52 96.34 97.71 96.27 99.13
14. L.Liu et al.-SRP [19] 99.37 97.16 99.29 98.56 99.30 48.2
15. L.Liu et al.-ELBP [20] 97.29 58.10
16. Kong and Wang [13] 96.61 99.32 99.32
17. PRIP02 [10] 77.00
18. TUA03 [10] 76.60
19. L.Zhang et al.-BGF [41] 98.70
20. Ojala et al.-LBP [23] 98.10(***) 51.50(**)
21. Ahonen et al.-LBP-FH [6] 54.60
22. C.Liu et al.-aLDA [17] 44.60
23. Hu et al. [12] 54.00

the best reported result [9] (99.0% vs. 98.8%, Table 2). Note that on this dataset, oBIFs
instead of BIFs considerably worsen the results. oBIFs (σ ∈ {1,4}) yield 73.8% with NNC,
91.2% with CRC, 93.3% with SRC and 84.5% with INNC.

UMD is similar to UIUC, but with textures from the wild. BIFs (σ ∈ {1,2,4,8}) provide
robust top performance: 99.1% with NNC, 99.16% with CRC, 99.54% with SRC, 99.28%
with INNC. The previous top results were reported for the trained approaches based on SRP
(99.32% [19]) and on SIFT with BoRs and Locally constrained CRC (99.32%-[13], Table 2).
oBIFs (σ ∈ {1,4}) achieve also top results: 97.1% with NNC, 98.7% with CRC, 98.9% with
SRC, and 98.4% with INNC.

KTHTIPS2b is a very challenging texture benchmark. It contains only 4 samples per
class, but each sample is further represented by 108 images (combination of 9 scales, 3
viewpoints and 4 illumination conditions). The samples – with all their 108 images - are
distributed over either the training or the testing set. For validation, for each class we ran-
domly select k samples for training and the remaining 4− k for testing. In our experiments
k ∈ {1,2,3}, and for each k we have 10 trials. The results are depicted in Fig. 2 and Table 2.
We significantly improve the state-of-the-art performance. For oBIFs (σ ∈ {1,2,4}) and
k = 1 we have: 61.67% with NNC, 64.73% with CRC, and 66.26% with INNC.

3.3 Material Recognition
The Flickr Material Database (FMD) [17, 26](Table 1) is a challenging dataset designated
for material recognition, which is closely related to texture classification but at the same time
different in many ways. In our experiments, we use 10 trials of 50 randomly picked training
and testing images per class.

We consider that for materials an intermediate local representation is useful, especially
when a large training set is available as in the case of FMD. For this purpose, we consider
BoR representations, where the image is split into l2 non-overlapping cells/regions at level l.
For each cell the histogram is computed from all its points. All cell histograms from training
are taken individually in the training pool, while for the test images the cell histograms
are the Bag-of-Regions image representations. Note that the WTA-hash robustification is
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Table 3: Spatial granularity affects material recognition (BoRs+NNC,%) on FMD.
number cells 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 12 +22 +42 +82 72 +82 12 + · · ·+82

BIFs, σ ∈ {1} 21.1 23.6 23.3 22.6 22.4 22.7 22.5 22.4 32.1 32.4 34.5
BIFs, σ ∈ {1,4} 24.8 31.8 35.5 37.0 38.1 39.0 39.7 40.4 41.8 42.1 42.5
BIFs, σ ∈ {1,2,4,8} 26.9 32.8 34.5 36.2 36.4 37.4 38.0 39.5 40.6 41.7 42.1
oBIFs, σ ∈ {1} 21.2 27.2 33.5 34.1 36.4 37.7 38.4 40.6 41.2 41.4 42.0
oBIFs, σ ∈ {1,4} 29.3 31.5 34.4 33.9 34.2 35.4 37.0 38.1 41.3 41.5 42.6
oBIFs, σ ∈ {1,2,4} 29.9 30.1 31.6 32.5

able to improve the performance, but not significantly, especially when compared to the l1
normalized and square-rooted descriptors that we use in our settings. The classification is
done in the Naive Bayes framework where the decision is built using the distance of each cell
histogram to the labeled training pool of cell samples [7, 13, 28]. The impact of the number
of cells and scales is evaluated. Table 3 depicts the results of our system with BIFs and oBIFs
using an NNC, which leads to the standard Naive Bayes Nearest Neighbor classifier [7]. If
we only use the whole image (rather than a pyramid) the best results are achieved using
oBIFs with σ ∈ {1,2,4}: 29.9%-NNC,48.6%-CRC,49.1%-SRC,41.5%-INNC.

On this material recognition task, increasing the number of cells and thus refining the
spatial representation, improves the results. Thus, for BIFs with 2 scales, while at the coars-
est setting, one cell for the whole image, we obtain 25% with NNC and 47% with CRC; at
the finest setting, with 64 cells, the recognition improves to 40.5% with NNC and 54.5%
with CRC. Combining regions of different sizes improves the classification, thus putting to-
gether the cells from an 8-level pyramid pushes the performance of BIFs with σ ∈ {1,4} and
NNC to 42.5%. The larger the number of cells/regions, usually the better the performance
(as shown also in [13]), but at the cost of slowing down the computation.

3.4 Writer Identification
For writer identification we use the recently introduced CVCMUSCIMA [10, 11] dataset.
This dataset has 50 writers and 20 music scores pages per (Table 1). The music pages do not
exhibit significant rotations or scale changes and, moreover, the writers used the same pen.
The staff lines were removed and the images were binarized, thus the input images are quite
clean and of low scale, rotation, and viewpoint variance. In the original form the dataset is
proposed with a single split such that for each writer there are 10 randomly selected pages
for training and the remaining 10 pages are for testing.

With oBIF features with 2 scales (1,4) and without SPM or BoR, we achieve 50.4%
identification performance with NNC, 60.4% with the nearest mean class descriptor classifier
(NMC), 74.2% with INNC (λ = 0.02), 98.6% with SRC (feature sign [16] λ = 0.001), and
99.8% with CRC (λ = 0.001). With BIF features at 4 scales (1,2,4,8), without SPM and
BoR, we get only 38.2% identification performance with NNC, 49.8% with NMC, 54.6%
with INNC (λ = 0.02), 71.2% with SRC (feature sign λ = 0.001), and 83.4% with CRC
(λ = 0.001). As expected, because of the lack of rotations in the dataset, BIF features,
despite of using more scales and larger descriptors (1296 vs. 484), perform poorer than the
oBIFs.

Because of the excellent results obtained with oBIFs and sparse or collaborative classi-
fiers – 99.8% vs. 77%, the best reported result so far [10] – we proceed further to validate
the system with different train/test partitions of CVCMUSCIMA. Thus, we consider splits
with 1 training page per writer, up to 10 training pages, and the remaining pages being the
testing pages. We randomly generate 100 trials for each such partition type and report the
mean performance (Fig. 3) for each considered framework setting.

Learning embeddings. The usual applications aim at efficiency and best performance,
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Figure 3: Writer identification versus training samples on CVCMUSCIMA dataset.

usually by learning the most from the training data. While up to now we considered a purely
training-free texture classification system, here we prove that adding discriminative learning
in any of the components of our proposed system is likely to improve the overall performance
on the considered datasets. For this, we use Linear Discriminant Analysis (LDA), as in [27],
to project the oBIFs features from their original 484-dimensional space into a lower, more
discriminative 49-dimensional space (we further l2-normalize them before the classification
step). LDA has as regularization parameter λ , which we put to 0.001. The results (Fig. 3)
show a considerable improvement over the training-free variants: 86.6%-INNC vs. 76.7%-
SRC for 2 training scores per writer.

3.5 Discussion
We have shown that training-free pipelines can outperform several state-of-the-art texture
classification methods. We populated the proposed scheme of Fig. 1 with state-of-the-art
components, each robust with respect to the choice of their parameters. Due to a lack of
space, we have analyzed just a handful of components and combinations. We are conser-
vative in our experiments, in that further finetuning would be possible, i.e. we only went
up to the point where the methods would outperform or get on par with the state-of-the-art,
training-based methods. Moreover, we did not report all the experimental results for the
combinations that were considered. Furthermore, we only report results using the basic im-
age features (BIFs) and its variants as local descriptors [9, 22], SPM [15] with one level and
a simple Bag-of-Regions model [13] as intermediate representations, and classifiers such as
NNC, SRC [34], CRC [40], or INNC [28].

As a matter of fact, we were somewhat surprised by the strong performance of these
methods, regardless of the dataset and/or task. Within the context of our classification
scheme, for object classification one would want to deploy rotation variant features and addi-
tional, spatial constraints. Further research can try and robustify the image/patch descriptors
by means of promising techniques such as WTA-hash, recently introduced in [38]. Also,
we believe that starting from our classification framework and adding training at any level
can improve performance further. We validated this in the writer identification task by using
LDA projections for the image descriptors. Significant improvements were achieved, both in
identification accuracy and in running time (the feature dimensionality is greatly reduced).
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4 Conclusions
This paper proposes an effective training-free texture classification system. It uses (o)BIF
columns for pixel level description, an SPM like multi-level image representation, the power
of collaborative reasoning, and sparse or collaborative classifiers. The proposed approach is
computationally simple. To a large extent, it also is training-free and data-independent. The
system was validated for texture classification, material recognition and writer identification
on several benchmarks. We obtain results that are at least on-par, but sometimes substantially
better than state-of-the-art performance.
Acknowledgments. This work was partly supported by the IWT/SBO ALAMIRE project
and the European Commission FP7 ICT-269980 AXES project.
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