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Abstract

Several applications require information about street

furniture. Part of the task is to survey all traffic signs. This

has to be done for millions of km of road, and the exer-

cise needs to be repeated every so often. A van with 8 roof-

mounted cameras drove through the streets and took images

every meter. The paper proposes a pipeline for the efficient

detection and recognition of traffic signs. The task is chal-

lenging, as illumination conditions change regularly, occlu-

sions are frequent, 3D positions and orientations vary sub-

stantially, and the actual signs are far less similar among

equal types than one might expect. We combine 2D and

3D techniques to improve results beyond the state-of-the-

art, which is still very much preoccupied with single view

analysis.

1. Introduction

Mobile mapping is used even more often, e.g. for the

creation of 3D city models for navigation, or for digital sur-

veying campaigns by public authorities to turn old paper

maps into digital databases. Several applications need the

locations and types of the traffic signs along the roads, see

Fig. 2. The paper describes an efficient pipeline for the de-

tection and recognition of such signs. Over the last years the

computer vision community has largely turned towards the

recognition of object classes, rather than specific patterns.

However, it would be a mistake to believe that the prob-

lem at hand is not extremely challenging. Moreover, false

positive and false negative rates have to be very low for au-

tomated methods to be useful in this case. That is why cur-

rently most of this work is still carried out by human oper-

ators. There are all the traditional problems of variations in

lighting, pose, and background, and of occlusions by other

objects, see Fig. 1a. In addition, these signs are often not

as precisely standardised as one would expect (this also de-

pends on the country, in our case Belgium), see Fig. 1b.

Whereas the majority of contributions so far work with a

rather small subset of sign types, our dataset includes 62 dif-

ferent types of signs. Moreover, the authors usually focus

a) Within-class variability:

b) Bad standardisation:

c) Among-class similarity:

Figure 1. Within-class variability and between-class similarity

are high: Each of first five rows contains instances of the same

class. Each of the last two rows shows traffic signs from two dis-

tinct classes.

Figure 2. 3D mapped traffic signs in a reconstructed scene.



on highway images, whereas our dataset mainly contains

images from smaller roads and streets. This poses a more

challenging problem as signs tend to be smaller, have more

often been smeared with graffiti or stickers, suffer more

from occlusions, are often older, and are visible in fewer

images. Also, several sign types never appear along high-

ways.

Even under simpler circumstances, the results of traffic

sign detection and recognition thus far testify to the com-

plexity of the task. Lafuente et al. [8] had 26% of false neg-

atives for 3 false positives per image. Maldonado et al. [12]

used image thresholding followed by SVM classification.

They mention that every traffic sign has been detected at

least twice in the total number of 5000 video frames, with

22 false alarms. Detection rates per view are not given.

Nunn et al. [16] showed that constraining the search to road

borders and an overhanging strip significantly reduces the

number of false positives, while false negatives are at 3.8%.

They still found 16494 false positives. All signs outside the

ROI are discarded. Pettersson et al. [17] reported on one of

the few results off the highway. But they restricted the de-

tection to speed signs, stop signs and give-way signs. They

got 10−4 − 10−5 false positive rates for 1% false negatives,

but fail to mention the number of sub-windows per image.

Moutarde et al. [14] reported no false positives at all in a

150 minutes long video, but with 11% of all traffic signs

left undetected. Ruta et al. [18] combine image threshold-

ing and shape detection achieving 6.2% of false negatives,

the number of false positives is not mentioned. Broggi et

al. [3] proposed a system similar to [12] where the SVM is

replaced by a neural network. No quantitative results are

presented. Although some papers mention the possibility

to track the traffic signs, the actual analysis reported in all

these papers is limited to a single image and is therefore

also purely 2D.

Results so far are not good enough to roll out such meth-

ods at a large scale. The numbers of false positives and

false negatives are too high. As a matter of fact, this liter-

ature is a bit decoupled from mainstream computer vision.

There, recent years have witnessed a flurry of activity in ob-

ject class detection, incl. many classes that are to be found

in street scenes. The vast majority works from a single im-

age [6, 1, 9]. Yet, approaches have emerged that try to ex-

ploit contextual information like the estimated position of

a ground plane, thereby introducing a weak notion of 3D

scene layout [7]. This was seen to be very beneficial. In a

similar vein, Wojek and Schiele [20] went further in cou-

pling object detection and scene labeling approaches. Also

their approach still works from a single image.

As a second strand of research, some recent techniques

have focused fully on the annotation of subsets of 3D point

clouds [4, 15]. 3D information is combined with motion,

colour, and other data. These systems, which have also been

mainly targeting urban scene segmentation and labeling,

show remarkable performance. Yet, smaller objects like

road signs are among the more difficult to handle. More-

over, traffic signs are planar. Given that image appearance

already yields such strong clues for object recognition, we

propose a hybrid strategy.

We do not stop at single view detection and recognition,

but include 3D localisation as well. Localisation probably

most resembles that of Cornelis et al. [5], who also com-

bined explicit 3D information with 2D car and person de-

tection in a mobile city mapping context. An important dif-

ference with this earlier work lies in the far less stringent

constraints offered by the 3D scene layout (no longer ob-

jects restricted to a ground plane) and the looser spatial ar-

rangements when looking for traffic signs. Moreover, traffic

signs have been designed to come as subclasses, and differ-

ent types of traffic signs within the same subclass have the

same shape and colour distributions. The distinction lies in

rather small details. These need to be picked up by the sys-

tem. Hence, the challenge is one of detecting traffic signs ir-

respective of the typical problems of changing appearances

and occlusions, but at the same time recognizing specific

sign types based on small differences.

The structure of the remainder of the paper is as follows.

Section 2 first gives an overview of the different steps taken

by the system. Then, we focus on the most innovative as-

pects. Section 3 explains the initial selection of good can-

didates within the individual images. Section 4 explains the

MDL formulation for 3D traffic sign localisation. Section 5

discusses experimental results and draws conclusions.

2. Overview of the system

Before starting with the description of how the traffic

signs are detected in the data, it is useful to give a bit more

information about our data capturing procedure. Like for

most large-scale surveying applications, a van with sensors

is driven through the streets. In our case, it has 8 cameras on

its roof: two looking ahead, two looking back, two looking

to the left, and two to the right. About every meter, each

of the cameras simultaneously takes a 1628 × 1236 image.

The average speed of the van is ∼ 35km/h. The cameras

are internally calibrated and also their relative positions are

known. Structure-from-motion combined with GPS yields

the ego-motion of the van.

We do not propose online driver assistance but an of-

fline traffic sign mapping system performing optimization

over the captured views. The considered traffic signs are

those that are captured at a distance of less than 50 me-

ters The proposed system first processes single images

independently, keeping the detection rate very high and

the number of false positives (FP) reasonable. Single-

view traffic sign detection in conjunction with the use of

scene geometry subsequently allows for global optimiza-



Figure 3. Haar-like features used in our implementation.

tion which performs 3D localisation and a refinement si-

multaneously. Since we deal with hundreds of thousands of

high-resolution images the approach is to quickly throw out

most of the background, to then invest increasing amounts

of time on whatever patterns survive previous steps. We

now describe each subsequent step of the single-view and

multi-view processing pipelines in more detail.

The single-view detection phase consists of the follow-

ing steps:

1) Candidate extraction - very fast preprocessing step,

where the optimal combination of simple (i.e. computa-

tionally cheap), adjustable methods selects bounding boxes

with possible traffic signs. This step is designed to yield

very few false negatives (FN, i.e. the number of missed

traffic signs), while keeping the number of false positives

(FP, i.e. the number of accepted background regions)

in check. This part of the pipeline is described in more

detail in section 3, as most of the novelty in single-view

processing is here.

2) Detection - Extracted candidates are verified further by

a binary classifier which filters out remaining background

regions. It is based on the well known Viola and Jones

Discrete AdaBoost classifier [19]. The 6 Haar-like patterns

used are shown in Fig. 3. Detection is performed by

cascades of AdaBoost classifiers, followed by an SVM

operating on normalized RGB channels, pyramids of

HOGs [2] and AdaBoost-selected Haar-like features.

3) Recognition - Six one-against-all SVM classifiers select

one of the six basic traffic sign subclasses (triangle-up,

triangle-down, circle-blue, circle-red, rectangle and dia-

mond) for the different candidate traffic signs. They work

on the RGB colour channels normalized by the intensity

variance.

Themulti-view phase consists of the following steps:

4) Multi-view hypothesis generation - We search for pos-

sible correspondences among the remaining candidates,

within a predefined radius in 3D space. Every geometri-

cally and visually consistent pair is used to create a 3D hy-

pothesis. Geometric consistency amounts to checking the

position of the backprojected 3D hypothesis against the 2D

image candidates. Visual consistency gives higher weight

to pairs with the same basic shape.

5) Multi-view MDL hypothesis pruning - Minimum de-

scription length is used to select the subset of 3D hypotheses

which best explains the overall set of 2D candidates. A side

product of the MDL optimization is quite a clean set of 2D

Original Thresholded Connected Extracted

image image I(T ) components bound. boxes

Figure 4. Colour-based extraction method for threshold T =
(0.5, 0.2,−0.4, 1.0)⊤

candidates corresponding to each particular 3D hypothesis.

These candidates allow for hypothesis position refinement.

Usually, steps 4) and 5) are iterated. More details are given

in section 4.

6) Multi-view sign type recognition - The collected set of

2D candidates for each 3D hypothesis is classified by an

SVM classifier. These classifications then jointly vote on

the final type assigned to the hypothesis.

3. Single-view candidate extraction

For step 1, we start from connected components in a

thresholded image, an idea which has already been used

in [12, 3]. The principle is demonstrated in Fig. 4, where

the thresholded image is obtained from a colour image, with

colour channels (IR, IG, IB), by application of a colour

threshold T = (t, a, b, c)⊤

I(T ) =

{

1 a · IR + b · IG + c · IB ≥ t

0 otherwise
(1)

Since there typically is no single threshold performing well

by itself, it is necessary to combine regions selected by dif-

ferent thresholds T = {T1, T2, . . . }, in the sense of adding

regions (OR-ing operation). Then, regions passed on by any

threshold are going to the next stage, i.e. detection. The

more thresholds are used the lower FN can be made but the

higher FP risks to get, and the higher the computational cost

will be.

Partially occluded, peeled or dirty traffic signs also

should pass the colour test. Therefore, this cannot be made

too restrictive. Examples are shown in Fig. 5. That is why

we also employ shape information to further refine the can-

didates. Section 3.1 explains how the set of colour thresh-

olds are learned and how, starting from those, the colour-

based candidates are extracted. Section 3.2 then describes a

shape-based Hough transform. This takes the borders of the

colour-based candidates as input.

3.1. Colour­based candidate extraction

The task is to find the optimal set T of colour thresholds,

given some criterion. Since for most interesting such crite-

ria the problem is NP-complete, we formulate our search as



Occlusion Occlusion Peeled Dirty

Figure 5. Not threshold separable traffic signs. There are still

traffic signs which are not well locally separable from background;

therefore shape-based extraction is used.

a Boolean Linear Programming problem. We have experi-

mentally found that finding the real optimum takes several

hours, but that BLP, due to the sparsity of the constraints,

yields a viable solution within minutes.

The most straightforward criterion is to search for a

trade-off between FP and FN

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T )), (2)

where FP(T ) stands for the number of false positives and

FN(T ) for the number of false negatives, resp., of the se-

lected subset of thresholding operations T measured on a

training set. The real number κ1 is a relative weighting fac-

tor. In order to avoid overfitting and also to keep the method

sufficiently fast, we introduce an additional constraint on

the cardinality card(T ) of the set of selected thresholds.

This can be either a hard constraint card(T ) < ǫ or a soft

constraint as in

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T ) + κ2 · card(T )) (3)

We achieved better results with the soft constraint, but im-

posing a hard constraint may be necessary if the running

time is an issue. Since accuracy1 is usually quite important

we add a term assuring that accurate methods are preferred:

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T )

+κ2 · card(T ) − κ3 · accuracy(T )) (4)

Scalars κ1, κ2 and κ3 are weighting parameters which

we estimate by cross-validation. Reformulations of Prob-

lems (2,3,4) into the Boolean Linear Programming form are

described in the Appendix.

Simple colour thresholding comes out to be insufficient

in practice. We therefore introduce a couple of refinements.

Many traffic signs have parts that cannot be separated from

the background with any threshold. See for example Fig. 6.

The rim of the sign is too similar in colour to the back-

ground. Yet, the white inner part can be separated rather

easily. We therefore introduce the extended threshold

T = (t, a, b, c
︸ ︷︷ ︸

T

, sr, sc)
⊤ (5)

1Accuracy is the average of overlap between ground truth bounding

boxes with extracted bounding boxes.

Original Extracted Bounding Rescaled

image region box bound. box

Figure 6. Demonstration of the extended threshold. The ob-

ject is not well locally separable from the background, because

bricks have a colour similar to that of the red boundary. Therefore

the inner white part is extracted and the resulting bounding box is

rescaled T = (0.1,−0.433,−0.250, 0.866, 1.6, 1.6)⊤.

Original Extracted Hough Refined

image region accumulator bound. box

Figure 7. Shape-based extraction principle. The border of the

colour-based extracted region (blue) votes for different shapes in a

Hough accumulator. The green bounding box corresponds to the

maximum.

which consists of the original threshold T and vertical resp.

horizontal scaling factors (sr, sc) to be applied to the ex-

tracted bounding box. Such extended threshold - in the se-

quel simply referred to as threshold - can reveal a traffic

sign, even if its rim poses problems. Learning now becomes

searching for the set of 6-dimensional thresholds.

Changing illumination poses another problem to thresh-

olding. One could try to adapt the set of thresholds to the

illumination conditions, but it is better to add robustness to

the thresholding method itself. We adjust the threshold to

be locally stable in the sense of Maximally Stable Extremal

Regions (MSER) [13]. Instead of using the bounding box

directly extracted by the learned threshold (t, a, b, c, sr, sc),
we use bounding boxes from MSERs detected within the

range [(t − ǫ, a, b, c, sr, sc); (t + ǫ, a, b, c, sr, sc)], where ǫ
is a parameter of the method. Since MSERs themselves are

defined by a stability parameter ∆, this ‘TMSER’ method

is parametrized by two parameters (ǫ, ∆).

3.2. Shape­based candidate extraction

Traffic signs have characteristic shapes. Each of the

above thresholds (with scaling and TMSER extensions) let

pass a series of connected components, i.e. regions. To

these regions we now apply an additional filter, akin to the

generalized Hough transformation. The principle is out-

lined in Fig. 7.

In general the image shapes of the signs will be affinely

transformed versions of the actual shapes. Using the gener-



Figure 8. Threshold-specific fuzzy templates. Selected subset

{23, 12, 28, 32} from 44 fuzzy-templates.

alized Hough transformation in its traditional form would

require to detect every single shape in 5D (or even 6D)

Hough accumulator spaces. Apart from the computational

load involved, working in such vast spaces is almost guar-

anteed to fail. Instead, we learn fuzzy templates which in-

corporate small affine transformations and shape variations

and we determine explicitly only the position and scale in a

3D Hough accumulator.

The most straightforward fuzzy templates could be

learned as a probability distribution of boundaries of colour-

based extracted regions for specific signs. Such approach,

however, would require as many templates as there are dif-

ferent shapes. A more parsimonious use of templates is pos-

sible, however. Since the learned thresholds are usually spe-

cialized for some kinds of traffic signs, we learn threshold-

specific fuzzy templates. Fig. 8 gives examples. For each

threshold, we first collect boundaries of extracted regions

which yield correct bounding boxes. Then the scale is nor-

malized (aspect ratio is preserved) and the probability distri-

bution of the shapes extracted by the threshold is computed.

Eventually, the fuzzy template is estimated as the point re-

flection of the probability distribution, because voting in the

Hough accumulator requires the point-reflected shape. For

example, the second fuzzy template in Fig. 8 corresponds

mainly to traffic signs which are circular or upward-pointing

triangular, whence the downward-pointing triangular part of

the template (in addition to the circular part).

When a boundary is extracted by a threshold, the

threshold-specific fuzzy template is used to compute the

Hough transformation. A bounding box corresponding to

the maximum in the three dimensional Hough accumula-

tor (2 positions and 1 scale) is reported if the maximum

is sufficiently high. The role of the shape selection step

mainly consists of selecting a sub-window from a colour-

defined bounding box, with the right shape enclosed. We

always keep the original bounding box as a separate candi-

date, however.

4. MDL 3D optimization

Single view detection and recognition is just a prepro-

cessing stage, and the final decision results from global op-

timization over multiple views, based on the Minimum De-

scription Length principle (MDL). Given the set of images,

single-view detections, camera positions and calibrations,

MDL searches for the smallest possible set of 3D hypothe-

Figure 9. MDL principle - the corresponding pairs generate 3D

hypotheses, from which one should not pick up the green subset

on the left, but rather the best/smallest subset explaining the 2D

detections, shown in green on the right, thus following the MDL

principles.

ses which sufficiently explains all detected bounding boxes.

In other words, if a set of detected bounding boxes satis-

fies some geometrical and visual constraints, then all of

these bounding boxes are explainable by one 3D traffic sign.

Next, we explain how MDL is used for that purpose.

We start by generating an overcomplete set of hypothe-

ses: For every single 2D detection we collect every geomet-

rically and visually consistent correspondence and use this

pair to generate a 3D hypothesis, see Figure 9. Geometrical

consistency means that the corresponding detection lies on

the epipolar line for the camera pair. Visual consistency

means that their recognized subclass types are the same.

This step, of course, generates a high number of 3D hy-

potheses, including false positives and multiple responses

for real traffic signs. The following MDL optimization se-

lects the simplest subset which best explains 2D detections,

see Figure 9, right.

For each 3D hypothesis we will have a 3D position of the

centre, a fitted plane and thus an orientation (and sense), and

estimated probabilities to belong to the basic shapes. For a

specific hypothesis h we gather the set of supporting 2D

candidates which have a coverage2 with the 2D projection

of h above 0.05 and for which the candidate camera and

the hypothesis are facing eachother (rather than the camera

observing the backside of the sign), at less than 50 meters.

Let the set of 2D candidates be Ch.

In order to define the MDL optimization problem, we

first compute savings (in coding length) for every single 3D

hypothesis h as follows:

Sh ∼ Sd − k1Sm − k2Se (6)

Sd is the part of the hypothesis which is explained by the

supporting candidates, Sm is the cost of coding the model

itself, while Se represents those parts that are not explain-

ing the given hypothesis, and k1, k2 are weights (as in [10]).

For each candidate c we have a 2D projection of h, whence
the coverage Oc,h of the projected h and the candidate c.

2Coverage is the ratio between the intersection and the union of areas.



The coverage assures independence of the size of support-

ing candidates. The estimated probability that the candi-

date explains the hypothesis is taken as the maximum of the

probabilities of them sharing a specific basic shape:

p(c, h) = max
t∈{△,▽,◦,�,♦}

pt(c)pt(h) (7)

Sd =
∑

c∈Ch

Oc,hp(c, h) (8)

Se =
∑

c∈Ch

(1 − Oc,h)p(c, h) (9)

We assume that one candidate can explain only one hy-

pothesis. Interaction between any two hypotheses hi and

hj that get support from shared candidates C = Chi

⋂
Chj

should be subtracted and is given by

Shi,hj
=

∑

c∈C

min
t∈{i,j}

(Sdt
(c) − k2Set

(c)) (10)

where Sdt
(c) and Set

(c) are constrained to the contribution
of c for ht

Leonardis et al. [11] have shown that if only pairwise in-

teractions are considered, then the Quadratic Boolean Prob-

lem (QBP) formulation gives the optimal set of models:

max
n

nT Sn, S =






s11 · · · s1M

...
. . .

...

sM1 · · · sMM




 (11)

Here, n = [n1, n2, · · · , nM ]T is a vector of indicator vari-

ables, 1 for accepted and 0 otherwise. S is the interaction

matrix with sii being the savings,sii = Shi
, while the others

are representing the interaction costs between two hypothe-

ses hi and hj , sij = sji = −0.5Shi,hj
. The restriction to

pairwise interactions will not fully capture situations where

more than 2 hypotheses affect the same image area.

5. Experiments

5.1. Ground truth data

Our ground truth data consists of 7356 stills (in total

11219 bounding boxes), which correspond to 2459 traffic

signs visible at less than 50 meters in at least one view. It

includes challenging samples as shown in Fig. 1. The multi-

view traffic sign detection, recognition, and localisation are

evaluated on 4 sequences, captured by 8 roof-mounted cam-

eras on the van, with a total of 121632 frames and 269 dif-

ferent traffic signs. For each sign the type and 3D location

were recorded.

Figure 10. Shape-based extractable but threshold inseparable

traffic signs - the ground truth is delineated by a red rectangle, the

best shape-based detection is shown in yellow and the best colour-

based one in green.

5.2. Single­view evaluation

The detection and extraction errors (Table 1) are evalu-

ated according to two criteria: either demanding detection

every time a sign appears (FN-BB), or only demanding it

is detected at least once (FN-TS, where we typically have

visibility in 3 views). When False Negatives are mentioned

in the literature, it is usually FN-TS which is meant, where

the number of views per sign is often even higher (highway

conditions). We considered a detection to be successful if

the coverage ≥ 0.65, which approximately corresponds to

the shift of a 20 × 20 bounding box by 2 pixels in both

directions. Note that some of our detected signs are quite

small, with the smallest 11 × 10. Approximately 25% of

non-extracted bounding boxes were smaller than 17 × 17,
most of the others were either taken under oblique angles

and/or were visually corrupted.

Table 1 shows results of both the candidate extraction

method, which, naturally, has a high number of FP (first

four rows) and detection (i.e. candidate extraction followed

by AdaBoost detector), which is shown in last two rows.

The ROC curve in Table 1 compares the FN-BB/FN-TS

achievable with our pure colour-based extraction method

to that with our combined (colour+TMSER+shape)-based

extraction method. Shape extraction significantly increases

the number of false positives (see for example 4th row in the

table). The reason for the increase is that we keep both the

original colour bounding boxes and add all bounding boxes

that reflect a good shape match. Combined extraction low-

ers FN, however. Traffic signs, not threshold separable as a

whole, but which could be extracted based on their shape,

are shown in Fig. 10.

5.3. Multi­view evaluation

In this section, we report the multi-view results. Whereas

we only reported on detection in the single-view case, we

now also pay attention to recognition (the determination of



FN-TS FN-BB FP per

[%] #/1274 [%] #/3756 2MP img

Extr1 (colour) 0.5% 7 1.5% 58 3 442.4
Extr2 (colour+TMSER) 0.4% 5 1.4% 53 4 008.5
Extr3 (colour+shape) 0.2% 2 1.0% 36 6 670.3
Extr4 (colour+TMSER+shape) 0.1% 1 1.0% 36 7 157.3
Det + Extr1 2.4% 31 4.9% 184 2.5
Det + Extr4 2.2% 28 4.3% 163 2.5

Table 1. Summary of achieved results in single-view detection. Meaning of the above used abbreviations is the following colour

means method described in Section 3.1, TMSER stands for TMSER(ǫ, ∆) = TMSER(0.1, 0.2) , shape is Section 3.2. FN-BB means

false negative with respect to bounding boxes, FN-TS means false negative with respect to traffic signs. The graph depicts the detection

performance for 2 candidate extraction settings: Extr1 and Extr4.

#No.frames/TSs Loc.TS FP Loc.TSr FPr Rec.TS

18 × 3001 /78 75(96.2%) 9 74(94.9%) 5 98.7%
28 × 6201 /71 68(95.8%) 14 68(95.8%) 13 95.6%
38 × 2001 /44 41(93.2%) 5 41(93.2%) 2 100%
48 × 4001 /76 73(96.1%) 9 73(96.1%) 8 97.3%

∑
8 × 15204 /269257(95.6%) 37 256(95.2%) 28 97.7%

Table 2. Summary of 3D achieved results. Meaning of the above

used abbreviations is the following Loc.TS means correctly lo-

cated traffic signs in 3D space, FP stands for false positives in 3D

and Rec.TS are the 3D recognition results with respect to the lo-

cated 3D TS. Loc.TSr and FPr show the results from the original

method after final refinement with template matching.

the specific type of each traffic sign) and localisation perfor-

mance. Some scores may seem a bit low compared to the

single-view ones – here and in the literature – but detection

in this section includes localisation (within 3m in X-Y-Z).

Note, that most of the incorrectly 3D localised traffic signs

were detected in at least one view.

We evaluate our multi-view pipeline on the 4 image sets.

The results are summarized in Table 2. The operating point

was selected to minimize FP at better than 95% correct lo-

calisation. This could be shifted towards a better localisa-

tion rate at the cost of more FP. Fig. 11 shows samples of

missed traffic signs (i.e. not detected or misplaced). The

main causes are occlusions, a weak confidence coming from

the detection and/or few views where a sign is visible. The

average accuracy of localisation (distance between the 3D

position according to the ground truth and the 3D recon-

structed traffic sign) is 24.54 cm. 90% of the located traf-

fic signs are reconstructed within 50 cm from the ground

truth, but we have also 3 traffic signs that are reconstructed

at more than 1.5 m.

Recognition results are summarized in the last column of

Table 2. It is shown that the overall recognition is 97.7%.

Figure 11. Not detected or misplaced traffic signs.

6. Conclusions

Traffic sign recognition is a challenging problem. We

have proposed a multi-view scheme, which combines 2D

and 3D analysis. Following a principle of spending little

time on the bulk of the data, and keeping a more refined

analysis for the promising parts of the images, the proposed

system combines efficiency with good performance. One

contribution of the paper is the Boolean linear optimisation

formulation for selecting the optimal candidate extraction

methods. Another novelty is the MDL formulation for best

describing the 2D detections with 3D reconstructed traffic

signs, without strongly relying on sign positions with re-

spect to the ground plane. Moreover, our task includes 3D

localisation of the signs, which prior art did not consider.

In the future, we will add further semantic reasoning

about traffic signs. They have different probabilities to

appear at certain places relative to the road, and also the

chances of them co-occurring differ substantially.
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Appendix

It is shown, how to transform the problems of eqs. (2,3,4)

into the Boolean Linear programming form.

Let us suppose we are given n positive samples and m
different extraction methods (e.g. color thresholding with

given threshold). Every method correctly extracts (i,e., with

sufficient accuracy) some subset of positive samples. De-



noting correctly extracted samples by ”1” and incorrectly

extracted samples by ”0”, each method is characterized by

an n-dimensional extraction vector. We align these vec-

tors row-wise into an n × m extraction matrix A. Intro-

ducing the binary m-dimensional vector T , where selected

methods are again denoted by ”1” and not selected method

by ”0”, the number of False Negatives from the subset of

methods given by T corresponds to the number of unsat-

isfied inequalities A · T ≥ 1n, where 1n denotes the n-
dimensional column vector of ones. Hence, introducing an

n-dimensional binary vector of slack variables ξ, the num-

ber of False Negatives is

FN(T ) = min
ξ

1
⊤
n · ξ

subj.to: A · T ≥ 1n − ξ, (12)

ξ ∈ {0, 1}n.

Let us be given the m-dimensional real valued vector b

containing the average number of False Positives for every

method 1 . . .m, then the average number of False Positives

obtained using the subset of methods given by T is

FP(T ) = b
⊤ · T (13)

Substituting from Equations (12,13), Problem (2) is

rewritten as:

T ∗ = argmin
T ,ξ

κ1 · 1
⊤
n · ξ + b

⊤ · T

subj.to: A · T ≥ 1n − ξ (14)

ξ ∈ {0, 1}n, T ∈ {0, 1}m.

In addition to that, since card(T ) = 1
⊤
m · T , Problem (3)

becomes

T ∗ = argmin
T

κ11
⊤
n · ξ + (b⊤ + κ2 · 1

⊤
m) · T

subj.to: A · T ≥ 1n − ξ (15)

ξ ∈ {0, 1}n, T ∈ {0, 1}m.

Finally, introducing the m-dimensional vector cwith av-

erage accuracy of every method, Problem (4) becomes

T ∗ = argmin
T

κ11
⊤
n · ξ + (b⊤ + κ2 · 1

⊤
m − κ3 · c

⊤) · T

subj.to: A · T ≥ 1n − ξ (16)

ξ ∈ {0, 1}n, T ∈ {0, 1}m.
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