Robust Fitting on Poorly Sampled Data for Surface Light Field Rendering and Image Relighting

Published in next issue of Computer Graphics Forum

Kenneth Vanhoey
KVanhoey@unistra.fr

Basile Sauvage
Sauvage@unistra.fr

Olivier Génevaux
Genevaux@unistra.fr

Frédéric Larue
FLarue@unistra.fr

Jean-Michel Dischler
Dischler@unistra.fr

GT Rendu, March 8th 2013
Telecom ParisTech, Paris

IGG team, ICube laboratory
Université de Strasbourg / CNRS
OUTLINE

1. Introduction

2. Robust Reconstruction Method

3. Statistical Robustness Analysis

4. Results and conclusion
INTRODUCTION
3D data acquisition with aspect

Definition

Recreate a 3D model of a real object through physical acquisition

- Shape (surface)
- Aspect (surface color)

Examples: geometry
3D data acquisition with aspect

Definition

Recreate a 3D model of a real object through physical acquisition

- Shape (surface)
- Aspect (surface color)

Examples: diffuse color
3D DATA ACQUISITION WITH ASPECT

Definition

Recreate a 3D model of a real object through physical acquisition

- Shape (surface)
- Aspect (surface color)

Examples: Diffuse Color vs. Directional Colors
Applications

<table>
<thead>
<tr>
<th>Filing (heritage)</th>
<th>Off-site study</th>
<th>Virtual environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings</td>
<td>Experts</td>
<td>Cinema</td>
</tr>
<tr>
<td>Historical objects</td>
<td>Amateurs (art gallery)</td>
<td>Gaming</td>
</tr>
</tbody>
</table>

Different needs

- Shape
- Aspect
Acquisition and reconstruction process

Physical acquisition

Algorithms

1. Picture projection on mesh
2. Aspect as a light field
ACQUISITION AND RECONSTRUCTION PROCESS

Physical acquisition

1. Picture projection on mesh
2. Aspect as a light field
Physical Constraints

- Light-weight, transportable devices: mobile scanner and hand-held camera
- Constrained space: fixed objects, obstacles, ...

Global Input

- incomplete coverage
- unstructured coverage

LF Representation

- LF Rendering [LH96] / Lumigraph [GGSC96]
- View-Dependant Texture Mapping [DTM96]
- Surface Light Field
 - Through factorization (global) [CBCG02]
 - Per surface unit (local) [WAA+00]

Local Input

- poor sampling distribution
- sparse
- noisy
Physical Constraints

- Light-weight, transportable devices: mobile scanner and hand-held camera
- Constrained space: fixed objects, obstacles, ...

Global Input

- incomplete coverage
- unstructured coverage

LF Representation

- LF Rendering [LH96] / Lumigraph [GGSC96]
- View-Dependant Texture Mapping [DTM96]
- Surface Light Field
 - Through factorization (global) [CBCG02]
 - Per surface unit (local) [WAA+00]

Local Input

- poor sampling distribution
- sparse
- noisy

Context: 3D data acquisition
Acquisition and reconstruction process
Challenges and framework

Introduction
Robust Reconstruction
Statistical Robustness Analysis
Results and conclusion
Input: \(K\) color samples

\[\{(\omega_i, v_i)\}\]

\(\omega_i\) is a local observation direction; \(v_i\) is a color.

Reconstruction algorithm

\[f(\omega_i) \approx v_i\]

Output: light field function

\[f(\omega) = \sum c_j \phi_j(\omega)\]

where the coefficients \(c_j\) are to be estimated.
Contributions

1. Simple Robust Reconstruction Method

2. Analysis / Comparison Tool
Robust Reconstruction Method
Examples

Stabilization through energy minimization

Stabilization energy choice

Examples

Stabilization energy choice

Examples

Vanhoey, Sauvage, Génevaux, Larue, Dischler

Robust Fitting on Poorly Sampled Data for IBR
Least Squares on Square Error

\[\text{ArgMin}_C(E_{MSE}) \]

where \(E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \)

Fitting

Which solution to choose?

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

Consequences

- Several solutions
- Unexpected solutions
- Unstable result
LEAST SQUARES ON SQUARE ERROR

\[
\text{ArgMin}_C (E_{MSE})
\]

where \(E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \)

FITTING

PROBLEMS

- Under-constriction
- Non-covered parts
- Perturbations (noise)

CONSEQUENCES

- Several solutions
- Unexpected solutions
- Unstable result
Least Squares on Square Error

\[\text{ArgMin}_C(E_{MSE}) \]

where \(E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \)

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

Consequences

- Several solutions
- Unexpected solutions
- Unstable result
Least Squares on Square Error

\[\text{ArgMin}_C (E_{MSE}) \]

where \(E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \)

Problems

- Under-construction
- Non-covered parts
- Perturbations (noise)

Generic and Simple Method For:

- well constrained
- penalizing unexpected colors
- increasing stability w.r.t. perturbations

Consequences

- Several solutions
- Unexpected solutions
- Unstable result
Minimization of weighted energies

\[\text{ArgMin}_C((1 - \lambda)E_{MSE} + \lambda E_{stab}) \]

where \(E_{MSE} = \sum_i ||f(\omega_i) - v_i||^2 \)

Generic and simple method for:

- well constrained
- penalizing unexpected colors
- increasing stability w.r.t. perturbations

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

Consequences

- Several solutions
- Unexpected solutions
- Unstable result
Minimization of weighted energies

\[
\text{ArgMin}_C ((1 - \lambda) E_{\text{MSE}} + \lambda E_{\text{stab}})
\]

E₀ : function energy

\[
E_{\text{stab}} = E_0 = \int \int_{\Omega} \| f \|^2
\]

Defined in [LLW06] for:

- reducing compression noise
- Spherical Harmonics

Does not suit our purpose

Pulls function values towards 0.

\[E_{\text{stab}} = E_0\]
Minimization of weighted energies

\[\text{ArgMin}_C((1 - \lambda)E_{MSE} + \lambda E_{stab}) \]

\(E_2 : \text{thin-plate energy} \)

\[E_{stab} = E_2 = \iint_{\Omega} (\Delta f)^2 \]

Defined in [WAA+00] for:

- local under-constriction problem
- Lumispheres

Efficient, but ...

- Generates expected colors in most cases
- Does not penalize extrapolations
Minimization of weighted energies

\[\text{ArgMin}_C ((1 - \lambda) E_{\text{MSE}} + \lambda E_{\text{stab}}) \]

E\textsubscript{1} : gradient energy

\[E_{\text{stab}} = E_{\text{1}} = \int \int_\Omega \| \nabla f \|^2 \]

Defined for:
- Limit high frequency variations and extrapolations

Efficient, and ...

- Generates expected colors
- Disallows extrapolations
- Tends towards constant value
Part 3 / 4

Statistical Robustness Analysis
Precision measure

- Visual
- \[E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \]

Stability measure

A stable fitting algorithm is one that is not sensitive to difficult conditions, e.g.:

- poor sampling conditions (bad coverage, sparsity)
- perturbations (input data noise, missing observation directions)
Precision measure

- Visual
- \[E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \]

Stability measure

A stable fitting algorithm is one that is not sensitive to difficult conditions, e.g.:

- poor sampling conditions (bad coverage, sparsity)
- perturbations (input data noise, missing observation directions)
Precision measure

- Visual
- $E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2$

Stability measure

A stable fitting algorithm is one that is not sensitive to difficult conditions, e.g.:

- poor sampling conditions (bad coverage, sparsity)
- perturbations (input data noise, missing observation directions)
MEASURES

- Precision error (bias)
- Stability error (variance)
- Expected prediction error \hat{E}

EXPECTED PREDICTION ERROR

Noisy input samples

$\lambda = 0.00$

$\lambda = 0.10$

$\lambda = 0.99$
Computation & interpretation

Tool

- Analyzing stabilization behavior w.r.t. input data, function basis, basis size, ...
- Derive optimal λ
- Compare energies

Estimate \hat{E}

Specific conditions [HTF01]

- No statistical model of input data (noise)
- Scarcity (finite data set to run statistical process on)

Bootstrap method
Results and conclusion
NEED FOR STABILIZATION

(c) ULS

(d) CLS
Energy Comparison

Comparison Results
All energies generate stable fittings.
- E_0 generates unwanted colors
- E_1 generates expected colors
- E_2 generates expected colors in some conditions

Robustness of E_1
- Function basis
- Color space
- Sparsity
- Basis size

E_0 generates unwanted colors. E_1 generates expected colors. E_2 generates expected colors in some conditions.
Energy Comparison

All energies generate stable fittings.

- E_0 generates unwanted colors
- E_1 generates expected colors
- E_2 generates expected colors in some conditions

Robustness of E_1

- Function basis
- Color space
- Sparsity
- Basis size
λ CHOICE

Choose λ
- Small enough for precision
- High enough for stability

For our setting
- $\lambda \in [0.01, 0.05]$ for E_0 and E_1
- $\lambda \in [0.001, 0.005]$ for E_2

Setting-dependent
Run bootstrap to derive your own optimal λ
Generic method

Works for any type of hemispherical functions.
Conclusion

Robust reconstruction method for surface light fields and image-based relighting applications

- difficult conditions (sparsity, distribution, noise, basis type and size)
- compromise between precision and stability

Statistical tool

- derive an optimal precision/stability compromise
- assess results

Future work

Reliable data for post-processing

- simplification
- level-of-detail visualization
- interpolation (for mip-mapping)

Issue

- holes: how to fill them?
Thank you for your attention!

Questions?

Paper available

- soon in Computer Graphics Forum
- now at http://dpt-info.u-strasbg.fr/~kvanhoey

Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
The Elements of Statistical Learning.

Ping-Man Lam, Chi-Sing Leung, and Tien-Tsin Wong.
Noise-resistant fitting for spherical harmonics.

Surface light fields for 3d photography.