Learning from Web-scale Image Data
For Visual Recognition

Chen Sun
Google Research
Recipe for Success (in Deep Learning era)
Recipe for Success (in Deep Learning era)

- Powerful Models
- Large Labeled Data
- Computation Power
Recipe for Success (in Deep Learning era)

- Powerful Models
- Large Labeled Data
- Computation Power
Recipe for Success (in Deep Learning era)

Powerful Models

Large Labeled Data

Computation Power
Recipe for Success (in Deep Learning era)

- **Powerful Models**
 - Inception ResNet-v2
 - ResNet-101
 - AlexNet
 - VGG
 - ResNet-50

- **Large Labeled Data**

- **Computation Power**

- **Model Size**
 - Number of Layers
 - Number of Parameters

- **Dataset Size**
 - Number of Images (M)

- **GPU Power**
 - GFlops

- Timeline:
 - 2012 to 2016
Curious Case of Vision Datasets

- What happens at 300x scale of ImageNet?
- How big is big? (Plateauing effect?)
- Data Size v.s. Model size
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era

Joint work with Abhinav Shrivastava, Saurabh Singh and Abhinav Gupta
ICCV 2017 (arXiv)
JFT-300M Dataset

- 300M web images
- 375M image label pairs

Previous publications on JFT:

- F. Chollet, Xception: Deep learning with depthwise separable convolutions. CVPR 2017
JFT-300M Dataset

- 300M web images
- 375M image label pairs
- ~19K categories
JFT-300M Dataset

- 300M web images
- 375M image label pairs
- ~ 19K categories
- ~ 20% label noise
- Unknown recall
- Long-tail distribution

Tortoise:

V.S.

Google
Training on JFT-300M

- Deep residual networks (ResNet-50 / 101 / 152)

Visualization of a 34-layer ResNet

Training on JFT-300M

- Deep residual networks (ResNet-50 / 101 / 152)
- 50 K80 GPUs for 1.5 months
- 4 epochs (ImageNet is trained for 100 epochs)
- Async SGD

![Graph showing training progress]
Empirical Study of JFT-300M Models

- Transfer the learned representations
 - Avoid potential bias of JFT-300M validation set
 - Common benchmark as ImageNet

Related work:
Transfer the Learned Representations

JFT 300M → Transfer weights → 18K labels

PASCAL2
Pattern Analysis, Statistical Modelling and Computational Learning

COCO
Common Objects in Context

Google
Empirical Study of JFT-300M Models

- Transfer the learned representations
 - Avoid potential bias of JFT-300M validation set
 - Common benchmark as ImageNet
- Verified on:
 - Object detection, semantic segmentation, human pose estimation
 - Frozen feature bottom v.s. Fine-tuning all layers
Better Representation Learning Helps!

Using a JFT-300M pre-trained checkpoint to replace ImageNet ones:

- **2.7% gain over best single model**
- **3.1% gain over comparable ResNet model**
Better Representation Learning Helps!

Absolute gains over ImageNet pre-training:

- 2% ImageNet top-1 classification accuracy

<table>
<thead>
<tr>
<th>Initialization</th>
<th>Top-1 Acc.</th>
<th>Top-5 Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRA checkpoint [16]</td>
<td>76.4</td>
<td>92.9</td>
</tr>
<tr>
<td>Random initialization</td>
<td>77.5</td>
<td>93.9</td>
</tr>
<tr>
<td>Fine-tune from JFT-300M</td>
<td>79.2</td>
<td>94.7</td>
</tr>
</tbody>
</table>
Better Representation Learning Helps!

Absolute gains over ImageNet pre-training:

- 2% ImageNet top-1 classification accuracy
- 3.1% mAP COCO object detection

<table>
<thead>
<tr>
<th>Method</th>
<th>mAP@0.5</th>
<th>mAP@[0.5,0.95]</th>
</tr>
</thead>
<tbody>
<tr>
<td>He et al. [16]</td>
<td>53.3</td>
<td>32.2</td>
</tr>
<tr>
<td>ImageNet</td>
<td>53.6</td>
<td>34.3</td>
</tr>
<tr>
<td>300M</td>
<td>56.9</td>
<td>36.7</td>
</tr>
<tr>
<td>ImageNet+300M</td>
<td>58.0</td>
<td>37.4</td>
</tr>
<tr>
<td>Inception ResNet [37]</td>
<td>56.3</td>
<td>35.5</td>
</tr>
</tbody>
</table>
Better Representation Learning Helps!

Absolute gains over ImageNet pre-training:

- 2% ImageNet top-1 classification accuracy
- 3.1% mAP COCO object detection
- 4.8% mAP (50% IOU) VOC 07 object detection
- 3% mIOU VOC 12 segmentation
- 2% AP COCO keypoint detection
Performance v.s. Data Size

- Log-linear with number of training images
- No saturation even at 300M scale
Deeper models are better with more data
Comparison with Previous Work

- Oquab et al. showed that careful selection is needed when using more ImageNet images for training.
 - Manual selection is not needed on JFT-300M
- Joulin et al. found saturation effect at 100M scale.
 - Only uses Flickr images.
 - Shallower model: AlexNet (v.s. ResNet)

Just Memorizing All Test Images?

- Deduplication between JFT-300M and target test data
- 10% overlap with ImageNet validation, 4% overlap with Pascal VOC test
Just Memorizing All Test Images?

- Deduplication between JFT-300M and target test data
- 10% overlap with ImageNet validation, 4% overlap with Pascal VOC test
- **No significant change** after removing the duplicates during evaluation
- Fun fact: 1.8% overlap between ImageNet training and validation
Rethinking the principles for CNN design

- Novel architectures at 300M scale
 - Deeper models perform better on JFT-300M
 - Deeper or wider?
- Our results show the lower bound for JFT-300M’s power
 - Architectures were designed for ImageNet
 - Hyperparameter search is limited

F. Chollet, Xception: Deep learning with depthwise separable convolutions. CVPR 2017
Take home messages

- Representation learning helps
- Performance grows log-linearly with the number of training images
- Deeper models are needed to fully utilize large-scale data
Next steps

● Further expanding the size of training data
 ○ 1 billion images?
● Unsupervised and semi-supervised training
● Generic representation v.s. Task specific
 ○ Plateauing effect for task-specific data or not?
 ○ Task-specific data is more difficult to obtain
Task-specific Data

COCO Dataset

VOC Dataset

Citiscape Dataset
Domain-specific (Web) Data

Figure credit: X. Chen, A. Shrivastava and A. Gupta, Enriching Visual Knowledge Bases via Object Discovery and Segmentation. In CVPR 2014.
Task-specific v.s. Domain-specific (Web)

- Task-specific data
 - Full supervision
 - Smaller scale
- Web data
 - Weak supervision
 - Large scale
 - Domain bias
Web Constraints Make Localization Easier!

Figure credit: X. Chen, A. Shrivastava and A. Gupta, Enriching Visual Knowledge Bases via Object Discovery and Segmentation. In CVPR 2014.
Weakly-supervised Object Detection

Weakly supervised object detection (WSOD):
Learn to localize objects (bounding boxes) using image-level labels
Constraint-transfer for Weakly Supervised Object Detection

Joint work with Senthil Purushwalkam and Abhinav Gupta
Domain Transfer Between (Web) Images and Videos

Temporal localization of fine grained actions in videos by domain transfer from web images.

ACM Multimedia 2015

Joint work with Sanketh Shetty, Rahul Sukthankar and Ram Nevatia.
Temporal Localization of Actions

Figure credit: Gao et al., TURN TAP: Temporal Unit Regression Network for Temporal Action Proposals. In ICCV 2017.
Weakly-supervised Temporal Localization

- A video typically contains multiple instances of different actions
- Only video-level labels are known, not temporal boundaries are given
- For sports, many “fine-grained” actions with similar background
Baseball + Pitch → Google
Assumption 1:
Video frames and web images which correspond to the action are visually similar
Assumption 2: Distributions of non-action frames and web images are usually very different
Mutual Voting between Images and Video Frames

(a) Basketball Dunk

(b) Bench Press

Webly-supervised Video Recognition by Mutually Voting for Relevant Web Images and Web Video Frames.

ECCV 2016

Joint work with Chuang Gan, Lixin Duan and Boqing Gong.
Three Ways to Use Web-scale Images

Representation Learning
Three Ways to Use Web-scale Images

- Representation Learning
- Cross-domain Constraints
Three Ways to Use Web-scale Images

- Representation Learning
- Cross-domain Constraints
- Cross-modal Constraints
Conclusions

- Web-scale images (300M) help visual representation learning
- Novel architectures should be explored to handle web-scale data
- Domain-specific web images provide useful constraints for weakly-supervised learning